Un total de 5 pages ont été trouvées avec le mot clé médicaments.
Nanotechnologies et Santé
Nanotechnologies et Santé
Cette rubrique a vocation à être progressivement complétée et mise à jour avec l'aide des adhérents et veilleurs de l'Avicenn. Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant des références à l'adresse redaction(at)veillenanos.fr.
Les nanoparticules sont expressément mentionnées comme risques émergents dans la Stratégie nationale de santé 2018-2022 rendue publique par le Ministère des solidarités et de la santé fin 2017 : sont prévues des actions sur les sources de pollution qu'elles représentent et la limitation de notre exposition. Reste à voir quand et comment... Avicenn plaide pour apporter rapidement des améliorations au registre R-nano, afin que les professionnels de la santé disposent d'un outil opérationnel pour mieux cerner les expositions, afin de les réduire.
Par l'équipe Avicenn - Dernière modification janvier 2021
Cette fiche a vocation à être complétée et mise à jour avec l'aide des adhérents et veilleurs d'Avicenn. Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr. Sommaire
L'article 60 de la loi de modernisation de notre système de santé avait prévu que le gouvernement remette au Parlement, à l'été 2017, un rapport sur les nanomatériaux dans les médicaments et dispositifs médicaux. Mais alors qu'en juillet 2018, le ministère de la santé avait annoncé sa publication prochaine, mi-2020, nous n'avions toujours aucune trace de ce rapport ! Malgré ses nombreuses relances auprès du ministère de la santé, Avicenn n'avait pas réussi à avoir plus d'infos, sinon que le rapport, réalisé par l'ANSM, serait finalisé et en cours de validation interministérielle... depuis au moins décembre 2017 ! En juillet 2020, Avicenn a donc envoyé une lettre recommandée au Premier ministre et au ministre des Solidarités et de la Santé pour réclamer la diffusion du rapport gouvernemental sur les nanomatériaux dans les médicaments et les dispositifs médicaux qui aurait dû être rendu public depuis trois ans.
Le rapport reçu le 3 août 2020 ne présente ni date ni auteur(s), ni précision sur la méthodologie, et comporte des références majoritairement anciennes et des limites importantes. Mais ses recommandations sont, elles, intéressantes et plus que jamais d'actualité : évolutions à apporter à la normalisation et réglementation pour une meilleure identification et évaluation des nanomédicaments et dispositifs médicaux ; modifications du registre R-nano convergentes avec les demandes portées par les acteurs de la précaution et de la prévention ; implication accrue de l'ANSM sur le sujet, etc.
Présence (non désirée) de nanoparticules dans les médicaments
Selon Que Choisir, "4 000 médicaments contiennent le colorant E171" composé en partie de nanoparticules de dioxyde de titane. 60 Millions de consommateurs a apporté la confirmation par des tests de la présence de ces nanoparticules dans 6 médicaments très utilisés (Efferalgan - Upsa, Spasfon - Teva, Zyrtecset - UCB Pharma, Nurofen - Reckitt Benckiser, Doliprane enfant - Sanofi, Euphytose - Bayer).
Il s'agit là de nanoparticules sans visée thérapeutique (présentes dans le pigment blanc E171, utilisé comme colorant et/ou comme opacifiant dans le pelliculage des comprimés ou dans les capsules des gélules pour ses propriétés protectrices vis-à-vis des rayonnements UV), à dissocier des "nano-médicaments", quant à eux volontairement conçus à l'échelle nano dans le but de traverser des barrières physiologiques et d'apporter des substances actives plus rapidement et/ou plus précisément dans le corps.
En juillet 2018, selon le Ministère des solidarités et de la santé en 2018, l'ANSM aurait saisi l'agence européenne des médicaments (EMA) ; des travaux seraient en cours sur l'ensemble des excipients sous forme nanométrique, entrant dans la composition des médicaments autorisés.
Interrogé par les médias, Thomas Borel, directeur des affaires scientifiques du LEEM, l'organisation professionnelle des entreprises du médicament en France, considère lui que "l'excipient E171 assure la stabilité du médicament" et qu'il est donc "indispensable", par exemple pour assurer la protection et l'ingestion du médicament"1.
Ceci dit, des marques promeuvent désormais des enrobages de médicaments sans TiO22. Et en mai 2019, Sanofi a confirmé réfléchir à substituer le dioxyde de titane de ses médicaments3.
En octobre 2020, l'association Agir pour l'Environnement a lancé une pétition "Stop titane" demandant l'élargissement de l'interdiction du dioxyde de titane aux médicaments et dentifrices.
Arnaud Pallotta et Jordan Beurton, Nanoparticules et médicaments, Festival Pint of Science, Laboratoire Cible Thérapeutiques et Formulation – CITHÉFOR (Université de Lorraine), Nancy, 27 mars 2019
CNRS, Un nanomatériau délivre des médicaments sous lumière infrarouge, Institut de physique et chimie des matériaux de Strasbourg (IPCMS, CNRS/Université de Strasbourg) et Institut de chimie et procédés pour l’énergie, l’environnement et la santé (ICPEES, CNRS/Université de Strasbourg), 26 novembre 2018
Les dispositifs sont conçus et fabriqués de façon à réduire autant que possible les risques associés à la taille et aux propriétés des particules qui sont libérées dans le corps du patient ou de l'utilisateur, ou sont susceptibles de l'être, sauf si elles entrent en contact uniquement avec une peau intacte. Une attention particulière est accordée aux nanomatériaux.
Tous les dispositifs qui incorporent un nanomatériau ou qui en sont constitués relèvent:
de la classe III s'ils présentent un potentiel d'exposition interne moyen ou élevé,
de la classe IIb s'ils présentent un faible potentiel d'exposition interne, et
de la classe IIa s'ils présentent un potentiel d'exposition interne négligeable.
3 - Cf. intervention de René Labatut, Vice-président, directeur de la stratégie d’innovation technologique, Sanofi, lors du Forum NanoResp, Médicaments et vaccins : à quoi servent leurs nanoparticules ?, 20 mai 2019. En mai 2018, le plan de gestion des nanoparticules de TiO2 mis en place par Sanofi avait fait l'objet d'une présentation lors du forum SOFHYT sur les risques émergents.
Page initialement créée en janvier 2018
Nano et Alimentation (2/7) : Quels ingrédients nano dans notre alimentation ?
Nano et Alimentation (2/7) : Quels ingrédients nano dans notre alimentation ?
Par l'équipe Avicenn - Dernière modification octobre 2019
→ Comme souligné dans le préambule de ce dossier, le flou domine concernant les applications des nanos dans l'alimentation : les applications énumérées ci-dessous proviennent de différentes sources compilées dans notre bibliographie1. Elles ne sont pas nécessairement toutes déjà commercialisées, ni présentes sur le marché français. Les promesses comme les risques demandent à être mieux évalués.
Depuis la mise en ligne de ce dossier en 2013, l'Autorité européenne de sécurité des aliments (EFSA) a néanmoins fait réaliser un "inventaire des additifs alimentaires et d'autres ingrédients alimentaires / matières en contact avec les aliments / utilisations des additifs alimentaires dans le domaine des nanotechnologies" accessible en ligne, mais en anglais uniquement : Inventory of Nanotechnology applications in the agricultural, feed and food sector, Rikilt et JRC, EFSA supporting publications, juin 2014.
Les applications les plus nombreuses concernent les emballages et matériaux en contact avec les denrées alimentaires
La plupart des applications des nanotechnologies dans le domaine alimentaire concernent aujourd'hui les matériaux au contact des aliments : emballages, surfaces de découpes, instruments de cuisine, parois de réfrigérateurs, filtres à eau par exemple.
Elles ont pour but de :
renforcer leur solidité, rigidité et résistance à la dégradation : nano nitrure de titane pour prévenir les rayures sur les emballages plastiques par exemple
accroître leur transparence (emballages plastiques)
permettre une meilleure conservation des aliments en protégeant nourriture ou boisson contre :
les écarts de températures (stabilité thermique)
les UV : nanoparticules d'oxydes de titane TiO2 dans des emballages plastique, nanoparticules d'oxyde de zinc,
la perte des arômes et les échanges gazeux (entrée d'oxygène, fuite de gaz carbonique) : nanoargiles, nanoparticules d'oxydes de titane dans des bouteilles plastique pour des bières aux Etats-Unis ; nanoparticules de nitrure de titane dans des emballages en PET (PolyEthylène Téréphtalate) autorisées en Europe2
l'humidité, l'oxygène (nanocouches d'aluminium ou d'oxyde d'aluminium utilisées pour des emballages de barres de chocolat)
les microbes, bactéries ou champignons : nano oxyde de zinc (ZnO) à l'intérieur de boîtes de conserve, nano dioxyde de titane (TiO2) ; nanotubes d'halloysite et nanoargents que l'on retrouve également sur les parois internes de certains réfrigérateurs, sur des planches à découper, des récipients hermétiques pour la conservation des aliments, barquettes alimentaires, films transparents3, etc.)
ou encore favoriser un meilleur écoulement des sauces4.
Les recherches nano dans le domaine des emballages alimentaires donnent lieu à de nombreuses publications académiques sur le sujet5.
Elles se complexifient et s'élargissent désormais également aux applications comme les nanocapteurs biologiques incorporés dans des emballages dits "intelligents" pour vérifier que la chaîne du froid a été respectée, assurer la traçabilité des aliments ou détecter et signaler les détériorations, bactéries ou contaminants dans les denrées alimentaires6.
Début 2013 en France, l'Agence Nationale de la Recherche (ANR) a intégré dans son son appel à projets P2N (Nanotechnologies et nanosystèmes) , entre autres, un appel pour soutenir des recherches sur "l'apport des nanotechnologies aux emballages intelligents et aux revêtements"7. Le projet européen NanoPack s’est vu accorder 7,7 millions d’euros par l’Union européenne dans le cadre de Horizon 2020, afin de développer des emballages antimicrobiens à base de nanotechnologies pour améliorer la sécurité alimentaire et réduire les déchets alimentaires8.
Un point de débat porte sur la possibilité que des nanomatériaux migrent des emballages (ou des revêtements de surfaces des instruments de cuisine) jusqu'aux denrées alimentaires qu'ils contiennent ou avec lesquelles ils entrent en contact ; les modalités de ce transfert et les risques qu'ils pourraient entraîner sont encore largement méconnus et très variables puisqu'entrent en ligne de compte de multiples facteurs (la température, la durée du conditionnement, la nature des denrées conditionnées : liquides ou solides, etc.).
En 2009, l'Association Nationale des Industries Alimentaires (ANIA) affirmait que "l'absence de migration dans les produits alimentaires a été démontrée"9. PlasticsEurope, association regroupant des fabricants de plastique européens, a commandité une étude dont les résultats publiés en 2013 tendent également à minimiser la probabilité d'occurrence d'une telle migration10.
Pourtant d'autres études ont montré qu'une migration est possible, avec même dans certains cas la mise en évidence d'effets néfastes (moins bonne absorption des nutriments et plus grande perméabilité de l'intestin, transférant dans le sang des composés indésirables)11. La migration des produits chimiques (nano ou non) contenus dans les emballages alimentaires vers les denrées qu'ils contiennent constitue de toute évidence une question majeure pour les années à venir12.
Quelles applications dans les denrées alimentaires elles-mêmes ?
On a longtemps soupçonné la présence de nanomatériaux dans des produits alimentaires, mais il n'est pas aisé d'identifier ce qui relève de la R&D de ce qui est déjà sur le marché, pour les raisons mentionnées dans notre préambule.
en 2016, les premiers tests de l'association Agir pour l'Environnement, ont établi la présence de nanoparticules non étiquetées dans six produits analysés : biscuits LU, chewing gums Malabar, blanquette de veau William Saurin et épices Carrefour, puis bonbons "Têtes brûlées" goût framboise et chewing-gums NEW'R de Leclerc.
en août 2017, le magazine 60 Millions de consommateurs a à son tour révélé que les 18 produits sur lesquels l'association a fait réaliser des tests contenaient eux aussi des nanomatériaux13
en janvier 2018, les tests du magazine Que Choisir en ont identifié dans 7 produits alimentaires14
en septembre 2018, les Amis de la Terre Allemagne ont publié des résultats d'analyse de poudre de cappuccino Jacobs et de chewing-gums Wrigleys, contenant respectivement 100% de nanoparticules de dioxyde de silicium (E551) et 8% de nanoparticules de dioxyde de titane (E171)15
en mai 2019, l'association italienne de consommateurs Altroconsumo a publié les résultats de tests menés sur des produits alimentaires, faisant état de teneurs élevées en nanoparticules dans les additifs alimentaires E171, E174 (argent) et E551 (silice) mais non signalées sur l'étiquette16
en juin 2019, le magazine belge Test santé a révélé que le E171 et le E551 contenu dans les 9 produits alimentaires testés contiennent des nanoparticules, dans des proportions variables (allant de 7 à 80% pour les 6 produits contenant du E171, 100% pour les 3 produits contenant du E551), sans mention [nano] sur l'emballage17
en juillet 2019, le magazine espagnol OCU-Compra Maestra a lui aussi révélé que le E171 et le E551 contenu dans les 8 produits alimentaires testés contiennent des nanoparticules, dans des proportions variables (allant de 27 à 76% pour les 4 produits contenant du E171, 100% pour les 4 produits contenant du E551), sans mention [nano] sur l'emballage18.
Depuis fin 2017, la DGCCRF (répression des fraudes) a présenté des résultats partiels de ses analyses, qui viennent confirmer celles publiées par les associations mentionnées plus haut : dans la quasi totalité des produits alimentaires testés et composés d'additifs, des nanoparticules ont été détectées... sans que l'étiquetage comporte de mention [nano]19.
Après l'ONG Center for Food Safety qui propose depuis 2015 un inventaire d'environ 300 produits alimentaires contenant des nanomatériaux aux USA (mis à jour début 2018), l'association Agir pour l'Environnement (APE) a mis en ligne, en mars 2017, le site http://www.infonano.org, une base de données répertoriant aujourd'hui plus de 300 produits alimentaires suspectés de contenir des nanoparticules.
Voici également ce que la littérature scientifique ou marketing permet également de recenser comme applications existantes ou à venir :
- Certaines sont présentées comme des solutions innovantes à des problèmes nutritionnels et/ou sanitaires :
diminution de la teneur en graisse20, en sel21, en calories ou en émulsifiants des aliments, sans altération de leur goût (le rapport surface / volume étant plus important à l'échelle nanométrique, un même poids de graisse ou de sel, sous forme nano, permettant de couvrir une zone plus importante de la surface alimentaire)
des nanoparticules d'oxyde de zinc (ZnO) seraient par exemple utilisées comme complément nutritionnel (pour renforcer le système immunitaire notamment),
des nanoparticules de fer seraient moins nocives pour les intestins que le fer administré sous sa forme classique23
des principes actifs, vitamines, enzymes, oligoéléments sont nanoencapsulés dans des aliments, afin d'augmenter leur biodisponibilité : protégés par la nanocapsule, les éléments en question se dégraderaient moins vite et seraient mieux absorbés par notre organisme.
lutte contre les intoxications alimentaires : des nanoparticules peuvent être utilisées pour lutter contre les infections alimentaires causées par des agents pathogènes (comme les bactéries E. coli ou salmonelles par exemple)
- D'autres pour des facilités techniques (ou de confort ?), sans nécessairement d'avantage nutritionnel ou sanitaire :
des nanoparticules de dioxyde de silice (SiO2 : E550/551) utilisées pour fixer l'humidité et empêcher l'agglomération des grains de sel ou de sucre, des épices, du cacao et des autres denrées en poudre comme les soupes en poudre et nouilles instantanées, divers assaisonnements pour viande hachée et burrito ou guacamole, etc.24
des nanoparticules de carbonate de calcium (E170) et d'oxyde de magnésium (E530) sont également utilisées comme anti-agglomérants
modification des arômes, saveurs, couleurs et textures des aliments :
des nanoparticules de dioxyde de titane (additif alimentaire E171, interdit en France depuis 2020) utilisées dans toutes sortes de denrées alimentaires, dont des compléments alimentaires et des médicaments25 servent :
de pigment blanc, utilisé pour rendre des aliments plus blancs, ou pour décliner une palette de couleurs en étant associé à d'autres colorants alimentaires (sur le glaçage de pâtisseries par exemple, un pâtissier pourra ainsi mélanger du E171 avec un colorant rouge pour obtenir du rose, etc.)
de vernis transparent rendant un produit plus brillant (chewing gums dragéifiés, M&M's, comprimés de médicaments)
des nanoparticules, notamment des nanosilices (additifE550/551), sont ajoutées dans certains produits alimentaires (plats surgelés, glaces, sauces, etc.26) afin de rendre leur texture plus homogène, plus onctueuse...
des nanoparticules d'argent ont été retrouvées dans l'additif alimentaire E17427 utilisé comme colorant argenté et décoratif pour les pâtisseries et chocolats
des nanoparticules d'or (E175) sont utilisées comme colorant doré pour les confiseries et pâtisseries
des nanoparticules d'oxyde de fer (E172) sont utilisées comme colorant pour donner une teinte rouge, jaune ou noire à des confiseries et biscuits ou à l'enveloppe de certaines charcuteries comme des saucisses de Francfort28
des nanoparticules de carbonate de calcium (E170) sont également utilisées comme colorant blanc
des recherches sont faites pour diffuser des saveurs, par ouverture progressive de nanocapsules.
des nanoagrégats de cacao permettraient d'accroître l'arôme de chocolat grâce à l'augmentation de la surface qui entre en contact avec les papilles gustatives29
En septembre 2018, plus de 80 pigments de taille nano ont été recensés sur le marché européen par l'agence européenne des produits chimiques (ECHA).
allongement de la durée de conservation :
intégration de nanocapsules qui libèrent progressivement des substances conservatrices dans les aliments ; ajout d'un caroténoïde (lycopène synthétique nanométrique, antioxydant) aux limonades, jus de fruits, fromages et margarine par exemple
ajout de nanoparticules de dioxyde de titane par exemple (TiO2, E171), que l'on trouvait par exemple pour les chewing-gums Trident, les M&M's, Mentos et autres bonbons, des barres chocolatées ou crèmes à café Nestlé30
ajout de nanoparticules de platine pour décomposer l'éthylène et ralentir le mûrissement des fruits et légumes31
ajout de nanorevêtements sur des fruits coupés pour allonger leur durée de conservation32
→ Début 2013 en France, l'Agence Nationale de la Recherche (ANR) a intégré dans son son appel à projets P2N (Nanotechnologies et nanosystèmes), entre autres, un appel pour soutenir des recherches sur "la protection et vectorisation de micronutriments indispensables au travers d'aliments nanostructurés" ou encore sur "les nouveaux additifs ou compléments alimentaires sous forme nanométrique"7.
Fin 2015, les niveaux estimés d'exposition alimentaire du TiO2 chez l'homme sont mille fois plus importantes que celles de perturbateurs endocriniens comme le bisphénol A : chez l'adulte de 0,2 à 1 mg/kg poids corporel/jour, et chez l'enfant / adolescent aux Etats-Unis de 1 à 3 mg/kg/jour (jusqu'à un maximum estimé à 6 mg au Royaume-Uni pour les plus exposés)33, du fait de la forte teneur en TiO2 dans les confiseries.
Nous absorberions en moyenne environ 124 mg de nano-silice par jour34.
D'autres sources indirectes de contamination de notre alimentation par des nanomatériaux manufacturés
Outre les voies d'entrée mentionnées plus haut (migration des emballages ou applications directes dans les denrées alimentaires), des résidus de nanomatériaux manufacturés peuvent être présents dans notre tube digestif en provenance de différentes sources :
Une contamination via les engrais et les pesticides ?
Des nanomatériaux contenus dans des produits phytosanitaires et fertilisants (et ceux présents dans les boues des stations d'épuration utilisées comme engrais) utilisés en agriculture pourraient remonter la chaîne alimentaire35. Les connaissances sur l'utilisation des nanomatériaux comme pesticides ou engrais sont encore très lacunaires36, mais il a été montré par exemple que des nanoparticules contenues dans des pesticides vaporisés peuvent traverser la pelure des fruits et légumes37.
Une contamination via l'alimentation animale et les médicaments vétérinaires ?
Des nanoparticules pourraient également être utilisées dans l'alimentation animale ou les traitements médicamenteux pour les animaux destinés à la consommation humaine38.
Mais en 2009, l'Afssa écrivait : "Après consultation de l'Agence nationale du médicament vétérinaire (ANMV) et de la Direction du végétal et de l'environnement (DiVE) il apparaît qu'aucun médicament vétérinaire ou produit phytosanitaire relevant des nanotechnologies n'a été soumis à autorisation à ce jour en Europe"39.
Une contamination plus générale ?
Plus généralement, des résidus de nanomatériaux manufacturés peuvent également être présents dans notre alimentation sans avoir été introduits à dessein par l'industrie agroalimentaire, mais plus prosaïquement du fait du relargage et de la dispersion des nanomatériaux manufacturés dans l'environnement et de leur transfert dans la chaîne alimentaire40:
- ceux qui sont présents dans les milieux aquatiques peuvent être absorbés par l'appareil digestif des moules41 ou par des algues, lesquelles sont ingérées par du zooplancton dont se nourrissent les poissons42 qui peuvent se retrouver dans nos assiettes : Source : Cedervall et. al, Food Chain Transport of Nanoparticles Affects Behaviour and Fat Metabolism in Fish, PLoS ONE, 7(2): e32254 (2012).
- ceux qui sont présents dans les sols peuvent être absorbés par les racines, puis transférés :
vers les graines des végétaux (par exemple dans des germes de soja)43
vers les feuilles (de blé, de colza ou de salade par exemple)44 :
Nano in packaging coming to a fridge near you, Catherine Simoneau, Joint Research Centre (JRC), Institute for Health and Consumer Protection (IHCP), European Union Reference Laboratory for Food Contact Materials (EURL), 2012
"Vous reprendrez bien une cuillerée de nanoparticules ?" (chapitre 5) in La civilisation des nanoproduits, Jean-Jacques Perrier, éditions Belin, septembre 2017
21 - Cf. Nanotechnology helps food manufacturers make healthier food, 30 juillet 2012 : "A novel product from Tate & Lyle, Soda-lo, was one of only a few products being marketed, he said. It enabled added salt levels to be reduced by up to 30% in foods such as bread, pizza bases, pastry, savoury pie fillings, cheese and baked snacks, without loss of flavour or structure".
Plus de 4 000 médicaments contiennent le colorant E171 ; parmi les plus consommés : Doliprane, Dafalgan, Efferalgan et les génériques de paracétamol, Advil et les génériques d'ibuprofène, Spasfon, Augmentin et génériques d'amoxicilline, Tahor et Crestor (statines), médicaments à base de metformine (antidiabétiques), d'omeprazole (contre les ulcères et le reflux gastro-oesophagien), de losartan (antihypertenseurs).
Les compléments alimentaires sont aussi concernés : une recherche sur un site de parapharmacie remonte 650 résultats qui concernent la plupart des grandes marques (Arkopharma, Forte Pharma, Omega Pharma, Juvamine, Oenobiol, Naturactive, Solgar, Pileje, etc.) et des secteurs (minceur, fatigue, stress, ménopause, confort articulaire, etc.).
Nanoparticules : une méthode pour étudier les faibles doses, CEA, 16 avril 2015 : deux équipes du CEA Saclay (DSM-Iramis et DSV-IBITECS) sont parvenues à suivre le parcours de nanoparticules de dioxyde de titane à des doses environnementales dans des moules de rivière.
Risques liés à l'ingestion de nanoparticules de dioxyde de titane
Risques liés à l'ingestion de nanoparticules de dioxyde de titane
Par l'équipe Avicenn - Dernière modification octobre 2020
Cette fiche a vocation à être complétée et mise à jour. Vous pouvez contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr.
Sommaire :
* On les trouve dans l'additif alimentaire E171 (utilisé comme colorant blanc ou vernis brillant) est constitué de particules de TiO2 (dont une partie sous forme nano).
** On les trouve en cosmétique indiqué en toutes lettres ("dioxyde de titane" ou "titanium dioxyde") notamment comme anti-UV ; ou comme colorant, avec le nom de code CI77891
Confusions sur les évaluations liées à l'ingestion de nanoparticules de TiO2
Voilà bientôt dix ans que l'Agence française de sécurité sanitaire (ANSES) appelle à la prudence à l’égard de l’utilisation de nanoparticules en alimentation humaine1.
L'autorisation de l'additif alimentaire E171 en vigueur en Europe depuis 1969 a été confortée par un avis scientifique de l'Autorité européenne de sécurité des aliments (EFSA) paru en septembre 2016 selon lequel les [rares] données disponibles aliments ne mettaient pas en évidence de problèmes de santé pour les consommateurs2. L'EFSA a ainsi donné son feu vert à la poursuite de l'utilisation d'un additif très répandu, mais sans avoir procédé à des tests ni disposé d'études robustes permettant d'évaluer correctement les effets réels de notre consommation cumulée (au quotidien et tout au long de la vie, via différents produits : aliments, dentifrices, médicaments, etc.)3.
En novembre 2016, l'INERIS a fourni une valeur repère de 3 µg/kg/j de TiO2 pour l'alimentation4. Or nous en consommons en moyenne bien plus : les estimations de consommation de TiO2 alimentaire (dont une fraction variable est nanométrique) vont de 0,2 à 1 mg/kg poids corporel/jour pour l'adulte, et chez l'enfant / adolescent aux Etats-Unis de 1 à 3 mg/kg/jour (jusqu'à un maximum estimé à 6 mg au Royaume-Uni pour les plus exposés)5, du fait de la plus forte teneur en TiO2 dans les confiseries.
Dans son avis de septembre 2016, l'EFSA recommandait néanmoins que de nouvelles études soient menées sur les effets du E171 sur le système reproducteur2.
Début 2017, alors qu'une étude préoccupante de l’Institut national de la recherche agronomique (INRA) venait de montrer, chez des rats exposés par voie orale à des nanoparticules de dioxyde de titane, des atteintes au système immunitaire intestinal et le développement de lésions précancéreuses dans le côlon6, la Commission européenne a publié un appel à données scientifiques et techniques sur le E171, qui a conduit la fédération des fabricants de TiO2 (la Titanium Dioxide Manufacturers Association (TDMA)) à prendre différents engagements :
fournir des données sur la taille des particules des E171 pour le 30 juin 2018, ainsi que d'autres informations sur les traces d'arsenic, de plomb, de mercure et de cadmium ainsi que sur l'alumine éventuellement présents dans le E171 avant fin 20177 ; mais en décembre 2018, le groupe de travail sur les spécifications des additifs alimentaires de l'EFSA a jugé que les données fournies par les industriels n'étaient pas suffisantes et que d'autres données et des clarifications sont nécessaires pour évaluer correctement l'additif8 ; un avis de l'EFSA, sur la base des données éventuellement fournies d'ici là par les fabricants de TiO2, est annoncé pour juillet 20199
mener une étude étendue de toxicité du E171 pour la reproduction sur plusieurs générations de rats, pour déterminer une dose journalière admissible (DJA), dont les résultats ne sont pas attendus avant l'été 202010
Saisie par le gouvernement pour vérifier l'étude de l'INRA11, l’ANSES a confirmé en avril 2017 les soupçons qui pèsent sur le E171 et le besoin d'études plus poussées sur les effets de cet additif12, afin que les autorités sanitaires puissent disposer de davantage de données obtenues dans des conditions réalistes d'exposition.
Fin mars 2018, la Commission européenne a demandé à l'EFSA d'examiner quatre études publiées après son avis sur l'additif E171 de 2016, afin de déterminer si elle considère comme nécessaire de réviser ce dernier. La réponse de l'EFSA, initialement attendue pour la fin mai13 a été dévoilée publiquement en juillet 2018 : le panel de scientifiques a estimé que les quatre études évaluées pointaient des effets préoccupants, mais comportaient des incertitudes limitant leur pertinence pour l'évaluation des risques, et conclu, une fois de plus, avec l'adage "des recherches supplémentaires sont nécessaires pour réduire le niveau d'incertitude"14.
Le 3 avril 2018, Avicenn avait demandé à la Commission pourquoi elle n'avait ciblé que ces quatre études ; nous n'avons pas obtenu de réponse sur ce point. Pourtant, malgré le trop faible nombre d’études sur les effets sur notre santé de l’ingestion de nanoparticules de TiO2 – au quotidien ET tout au long de la vie, Avicenn a compilé un nombre bien plus important d'études récentes, faisant état de résultats inquiétants (cf. ci-dessous).
En mai 2019, les autorités françaises ont présenté la suspension du E171 à la Commission européenne et aux autres Etats membres de l'UE lors d'une réunion du CPVADAAA à Bruxelles.
Trois jours plus tôt, l'EFSA avait confirmé que les données fournies par les industriels jusqu'à présent ne permettent pas d'évaluer correctement l'additif tout en considérant que le rapport de l'ANSES n'avait pas mis en évidence de nouvelles découvertes majeures qui annuleraient les conclusions de ses deux avis scientifiques précédents sur la sécurité du E171 de 2016 et 201816, ce qu'a réitéré un nouvel avis de l'EFSA publié en juillet 2019 sur les paramètres physico-chimiques des E171 commercialisés en Europe.
Un vote devrait avoir lieu ultérieurement sur l'extension, l'abrogation ou la modification de la mesure française. A suivre donc...
En septembre 2019, Avicenn a compilé une quinzaine d'articles très récemment publiés sur les effets indésirables liés à une exposition par voie orale au E171 ou à des nanoparticules de dioxyde de titane.
Alertes scientifiques liées à l'ingestion de nanoparticules de dioxyde de titane
Des effets néfastes associés à l'ingestion de nanoparticules de dioxyde de titane ont été observés avant 201617 (date de la publication de l'avis de l'EFSA) sur l'intestin, le foie, le cœur, l'estomac, ...
Des études récentes montrent qu’une partie non négligeable des (nano)particules de TiO2 ingérées peut passer la barrière intestinale et s’accumuler dans le corps18 .
D’autres sont venues confirmer l'existence effets délétères potentiels pour la santé liés à l'ingestion de nanoparticules de TiO2 :
risques pour le foie, les reins, l'estomac, les poumons, les ovaires et/ou les testicules chez le rat et la souris19, chez la truite20 mais aussi chez les humains21
problèmes immunitaires au niveau du côlon (susceptibles d'être liés au développement du cancer colorectal)22 chez le rat et la souris
perturbations du microbiote intestinal23 (pouvant favoriser le développement ou la progression de maladies inflammatoires de l'intestin comme la maladie de Crohn, des troubles métaboliques comme l'obésité ou du cancer colorectal, ou le risque de diabète gestationnel pour les femmes enceintes24), inflammations et altérations de la barrière intestinale chez les animaux comme chez les humains25
altérations de la fonction vasomotrice des artères chez le rat26
conséquences néfastes pour la descendance chez des rongeurs27
des perturbations importantes des processus physiologiques, ontogénétiques, génotoxiques et adaptatifs chez la mouche28 ; une toxicité avérée également chez le ver "Caenorhabditis elegans"29 (organisme modèle en biologie qui permet l'étude de l'apoptose, du développement embryonnaire et du vieillissement)
Une revue de la littérature scientifique réalisée par des chercheur·es du CEA a été publiée en mai 2020 : elle montre que les particules de dioxyde de titane (TiO2), de taille nanométrique et microscopique, entraînent des dommages de l'ADN sur divers types de cellules, pulmonaires et intestinales, même à des doses faibles et réalistes. En savoir plus ici.
* Quelques-unes des prises de position de ces scientifiques sont listées ci-dessous :
Le communiqué de l'INRAE alerte "sur l’importance d’évaluer le risque quant à la présence de nanoparticules dans cet additif commun face à l’exposition avérée de la femme enceinte" étant donné que l'exposition de la femme enceinte au dioxyde de titane conduit à une accumulation de nanoparticules de TiO2 dans le placenta et à une contamination du foetus, selon une étude menée par des scientifiques de l'INRAE, du LNE, du Groupe de Physique des Matériaux de Rouen, du CHU de Toulouse, de l’Université de Picardie Jules Verne et de l’Ecole Nationale Vétérinaire de Toulouse et publiée en octobre 2020
Selon Laurence Macia de l'université de Sydney, "le dioxyde de titane interagit avec les bactéries intestinales et altère certaines de leurs fonctions, ce qui peut entraîner l'apparition de maladies. Sa consommation devrait être mieux réglementée par les autorités alimentaires"30 (mai 2019)
Selon Fabrice Nesslany, de l'Institut Pasteur, "l'utilité est tellement faible, et avec les doutes qui peuvent quand même subsister aujourd'hui (...), ça ne sert à rien, donc dans l'attente d'études plus consolidées, ne l'utilisons pas" (novembre 2018)31.
Selon Héloïse Proquin de l'université de Maastricht aux Pays-Bas32, "la classification de E171 comme exempt d'effets toxiques en raison de son insolubilité et de son inertie n'est plus valable (...) ; la présence d’une inflammation constatée dans des modèles animaux après l’ingestion de E171 pourrait aggraver les maladies inflammatoires de l’intestin et ses effets indésirables sur le développement du cancer colorectal. Par conséquent, nous recommandons que les expériences (...) mettant l'accent sur les tests sur l'homme, soient effectuées pour une évaluation plus approfondie de E171 sur ses effets néfastes potentiels sur l'amélioration du cancer, la dérégulation du système immunitaire et l'inflammation. Ces nouvelles données fourniraient des informations sur les effets sur l'homme pour une évaluation complète des risques, ce qui pourrait entraîner une modification de l'utilisation de l'E171 dans les produits alimentaires : réduction de la quantité de nanoparticules, fixation d'un niveau maximal d’utilisation dans les produits alimentaires, limitation plus stricte des types de produits dans lesquels il peut être utilisé, voire suspension du produit lui-même".
Selon Gerhard Rogler de l'université de Zurich, "les patients présentant un dysfonctionnement de la barrière intestinale, comme dans la colite, devraient s'abstenir d'aliments contenant du dioxyde de titane" (juillet 2017)33.
Selon Francelyne Marano, de l'université Paris-Diderot, "quand leur ajout ne correspond pas à un besoin précis autre que l'amélioration de l'attractivité du produit, par exemple dans les bonbons ou les chewing-gums (...), [les nanoparticules de dioxyde de titane] devraient être interdites car elles n'apportent aucun avantage" (2016 et 2018)34.
Plus généralement, les publications scientifiques sur les risques sanitaires associés aux nanoparticules de dioxyde de titane (TiO2) tous secteurs confondus (alimentation mais aussi peintures, cosmétiques, etc.) s'accumulent depuis une quinzaine d’années maintenant. Voir notre fiche sur les risques liées aux nanoparticules de dioxyde de titane.
Malgré cela l'évaluation des risques associés au TiO2 et ses nanoformes dans le cadre de REACH a au moins trois ans de retard ; parce que les fabricants de TiO2 ont refusé de communiquer les données nécessaires à cette évaluation qui était attendue pour 201535 !
Food additives re-evaluation work programme, Paolo Colombo, Senior Scientific Officer - Food Additives Team, Food Ingredients and Packaging (FIP) Unit, EFSA, 28 avril 2014)
8 - "Data submitted by interested parties as well as their proposed amendment of the EU specifications for titanium dioxide (E 171) were discussed. The Working Group evaluated the available data and considered that additional data and clarifications would be needed to proceed with the assessment". Cf. Minutes of the 1st meeting of the Working Group on specifications of food additives Held on 18th December 2018, Scientific Panel on Food Additives and Flavourings, Brussels, décembre 2018
des réponses toxiques (dommages à l'ADN) ont été observés in vitro sur des lignées cellulaires épithéliales de l'intestin chez l'homme : cf. Gerloff et al. 2011, 2012, cité par E. Houdeau (voir note plus bas)
Detection of titanium particles in human liver and spleen and possible health implications, Heringa MB et al, Particle and Fibre Toxicology, 15:15, 2018 : cette publication a établi la présence de nanoparticules de dioxyde de titane (TiO2) dans le foie et la rate de 15 humains (et non plus seulement sur des rats de laboratoire). Dans la moitié des cas, les niveaux étaient supérieurs à celui jugé sans danger pour le foie.
The mechanism-based toxicity screening of particles with use in the food and nutrition sector via the ToxTracker reporter system, Brown DM et al., Toxicol. In Vitro, 4;61, 2019 : "The rapid expansion of the incorporation of nano-sized materials in consumer products overlaps with the necessity for high-throughput reliable screening tools for the identification of the potential hazardous properties of the nanomaterials. The ToxTracker assay (mechanism-based reporter assay based on embryonic stem cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress) is one such tool, which could prove useful in the field of particle toxicology allowing for high throughput screening. Here, ToxTracker was utilised to evaluate the potential hazardous properties of two particulates currently used in the food industry (vegetable carbon (E153) and food-grade TiO2 (E171)). Due to the fact that ToxTracker is based on a stem cell format, it is crucial that the data generated is assessed for its suitability and comparability to more conventionally used relevant source of cells - in this case cells from the gastrointestinal tract and the liver. Therefore, the cell reporter findings were compared to data from traditional assays (cytotoxicity, anti-oxidant depletion and DNA damage) and tissue relevant cell types. The data showed E171 to be the most cytotoxic, decreased intracellular glutathione and the most significant with regards to genotoxic effects. The ToxTracker data showed comparability to conventional toxicity and oxidative stress assays; however, some discrepancies were evident between the findings from ToxTracker and the comet assay".
Genotoxicity analysis of rutile titanium dioxide nanoparticles in mice after 28 days of repeated oral administration, Manivannan J et al., The Nucleus, 1-8, 2019 : "In this study Swiss albino male mice were gavaged TiO2-NP at sub-acute concentration (0.2, 0.4 and 0.8 mg/kg body weight) over a period of 28 days. Results revealed that TiO2-NP administered was of rutile form with mean average size of 25 nm by transmission electron microscopy. The values of PDI and Zeta potential from DLS of TiO2-NP in suspension specified that the nanomaterial was stable without much agglomeration. Chromosomal aberration assay showed that TiO2-NP is genotoxic and cytotoxic. DNA damage evaluation by comet assay confirmed that long term exposure to TiO2-NP at low concentrations can induce genotoxicity systemically in organs, such as liver, spleen, and thymus cells. Structural chromosomal aberration test from bone marrow cells revealed the clastogenicity of TiO2-NP at sub chronic low concentrations".
Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice: effect of dose and particle size, Ali SA et al., Biomarkers, 24(5) : 492-498 , 2019 : "The effect of five days oral administration of TiO2 NPs (21 and 80 nm) with different doses was assessed in mice via measurement of oxidative stress markers; glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and nitric oxide (NO), liver function indices; aspartate and alanine aminotransferases (AST and ALT), chromosomal aberrations and liver histopathological pattern. The results revealed drastic alterations in all the measured parameters and showed positive correlation with the gradual dose increment. In addition, the smaller particle size of TiO2 NPS (21 nm) had more adverse effect in all the selected biochemical parameters, genetic aberrations and histological investigations. Toxicity of TiO2 NPs increases in a dose-dependent manner and vice versa with particles size. The evaluated biomarkers are good indicators for TiO2 NPs toxicity. More detailed studies are required before the recommendation of TiO2 NPS as food additives."
Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status, Talamini L et al., Nanotoxicology, 2019 : repeated oral administration of E171 to mice at a dose level (5 mg/kg body weight for 3 days/week for 3 weeks) comparable to estimated human dietary exposure, resulted in TiO2 deposition in the liver and intestine; titanium accumulation in liver was associated with necroinflammatory foci containing tissue monocytes/macrophages; three days after the last dose, increased superoxide production and inflammation were observed in the stomach and intestine. Overall, the present study indicates that the risk for human health associated with dietary exposure to E171 needs to be carefully considered".
Gender difference in hepatic toxicity of titanium dioxide nanoparticles after subchronic oral exposure in Sprague‐Dawley rats, Chen Z et al., Journal of Applied Toxicology, 2019 : the study examined female and male Sprague‐Dawley rats administrated with TiO2 NPs orally at doses of 0, 2, 10 and 50 mg/kg body weight per day for 90 days ; it found significant hepatic toxicity that could be induced by subchronic oral exposure to TiO2 NPs, which was more obvious and severe in female rats and caused through indirect pathways
Hepatic and Renal Toxicity Induced by TiO2 Nanoparticles in Rats: A Morphological and Metabonomic Study, Valentini, X et al., Journal of Toxicology, 2019 : "Rats were exposed to different doses of TiO2 nanoparticles and sacrificed, respectively, 4 days, 1 month, and 2 months after treatment. Dosage of TiO2 in tissues revealed an important accumulation of TiO2 in the liver. The nanoparticles induced morphological and physiological alterations in liver and kidney. In the liver, these alterations mainly affect the hepatocytes located around the centrilobular veins. These cells were the site of an oxidative stress evidenced by immunocytochemical detection of 4-hydroxynonenal (4-HNE). Kupffer cells are also the site of an important oxidative stress following the massive internalization of TiO2 nanoparticles. Enzymatic markers of liver and kidney functions (such as AST and uric acid) are also disrupted only in animals exposed to highest doses. The metabonomic approach allowed us to detect modifications in urine samples already detectable after 4 days in animals treated at the lowest dose. This metabonomic pattern testifies an oxidative stress as well as renal and hepatic alterations."
Detection of titanium particles in human liver and spleen and possible health implications, Heringa MB et al, Particle and Fibre Toxicology, 15:15, 2018 : cette publication a établi la présence de nanoparticules de dioxyde de titane (TiO2) dans le foie et la rate de 15 humains (et non plus seulement sur des rats de laboratoire). Dans la moitié des cas, les niveaux étaient supérieurs à celui jugé sans danger pour le foie.
Transcriptomics analysis reveals new insights in E171-induced molecular alterations in a mouse model of colon cancer, Proquin H et al., Scientific Reports, 8 : 9738, 2018 : "Titanium dioxide as a food additive (E171) has been demonstrated to facilitate growth of chemically induced colorectal tumours in vivo and induce transcriptomic changes suggestive of an immune system impairment and cancer development. The present study aimed to investigate the molecular mechanisms behind the tumour stimulatory effects of E171 in combination with azoxymethane (AOM)/dextran sodium sulphate (DSS) and compare these results to a recent study performed under the same conditions with E171 only. BALB/c mice underwent exposure to 5 mg/kgbw/day of E171 by gavage for 2, 7, 14, and 21 days. Whole genome mRNA microarray analyses on the distal colon were performed. The results show that E171 induced a downregulation of genes involved in the innate and adaptive immune system, suggesting impairment of this system. In addition, over time, signalling genes involved in colorectal cancer and other types of cancers were modulated. In relation to cancer development, effects potentially associated with oxidative stress were observed through modulation of genes related to antioxidant production. E171 affected genes involved in biotransformation of xenobiotics which can form reactive intermediates resulting in toxicological effects. These transcriptomics data reflect the early biological responses induced by E171 which precede tumour formation in an AOM/DSS mouse model"
Beyond the white: effects of the titanium dioxide food additive E171 on the development of colorectal cancer, Proquin, H, Maastricht: Gildeprint Drukkerijen, 2018 (Extrait du résumé : "colorectal cancer is the second most prevalent cancer in women and the third in men (...) ; E171 may enhance colorectal tumour formation. (...) The NPs fraction by its small size and higher surface area seems to induce more adverse effects than the MPs. Yet, the fact that MPs have an effect on ROS, DNA damage, and gene expression changes implies that potential health risks cannot be eliminated by increasing the proportion of MPs in E171. (...) For a full risk assessment, additional experiments should be performed (...) E171 is not inert and the adverse effects may not only contribute to cancer development in colon but may also aggravate inflammatory bowel diseases".)
Gene expression profiling in colon of mice exposed to food additive titanium dioxide (E171), Proquin H et al., Food Chem Toxicol., 111:153-16, janvier 2018 : une exposition de 21 jours à la dose de 5 mg/kg/j induit dans le côlon des changements significatifs dans l’expression de gènes impliqués dans le stress oxydatif, le système immunitaire et des gènes liés au cancer.
E171 : cet additif alimentaire modifie la flore intestinale, Futura Sciences, mai 2019 (voir en anglais : Common food additive found to affect gut microbiota, The University of Sydney, 13 mai 2019 et Impact of the Food Additive Titanium Dioxide (E171) on Gut Microbiota-Host Interaction, Pinget G. et al., Front. Nutr., 2019 : "We investigated the impact of food grade TiO2 on gut microbiota of mice when orally administered via drinking water. While TiO2 had minimal impact on the composition of the microbiota in the small intestine and colon, we found that TiO2 treatment could alter the release of bacterial metabolites in vivo and affect the spatial distribution of commensal bacteria in vitro by promoting biofilm formation. We also found reduced expression of the colonic mucin 2 gene, a key component of the intestinal mucus layer, and increased expression of the beta defensin gene, indicating that TiO2 significantly impacts gut homeostasis. These changes were associated with colonic inflammation, as shown by decreased crypt length, infiltration of CD8+ T cells, increased macrophages as well as increased expression of inflammatory cytokines. These findings collectively show that TiO2 is not inert, but rather impairs gut homeostasis which may in turn prime the host for disease development".)
Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status, Talamini L et al., Nanotoxicology, 2019 : repeated oral administration of E171 to mice at a dose level (5 mg/kg body weight for 3 days/week for 3 weeks) comparable to estimated human dietary exposure, resulted in TiO2 deposition in the liver and intestine; titanium accumulation in liver was associated with necroinflammatory foci containing tissue monocytes/macrophages; three days after the last dose, increased superoxide production and inflammation were observed in the stomach and intestine. Overall, the present study indicates that the risk for human health associated with dietary exposure to E171 needs to be carefully considered".
The food additive E171 and titanium dioxide nanoparticles indirectly alter the homeostasis of human intestinal epithelial cells in vitro, Dorier M et al., Environ. Sci.: Nano, Advance Article, 2019 : "Epithelial cells repeatedly exposed to TiO2 developed an inflammatory profile, together with increased mucus secretion. Epithelial integrity was unaltered, but the content of ATP-binding cassette (ABC) family xenobiotic efflux pumps was modified. Taken together, these data show that TiO2 moderately but significantly dysregulates several features that contribute to the protective function of the intestine."
In vitro intestinal epithelium responses to titanium dioxide nanoparticles, Pedata P et al., Food Research International, 119 : 634-642, mai 2019 : "The well-established Caco-2 cell line differentiated for 21 days on permeable supports was used as a predictive model of the human intestinal mucosa to identify the biological response triggered by TiO2 particles. Exposure to 42 μg/mL TiO2 nanoparticles disrupted the tight junctions-permeability barrier with a prompt effect detectable after 4 h incubation time and wide effects on barrier integrity at 24 h. Transport and ultrastructural localization of TiO2 nanoparticles were determined by ICP-OES, TEM and ESI/EELS analysis, respectively. Nano-sized particles were efficiently internalized and preferentially entrapped by Caco-2 monolayers. Storage of TiO2 nanoparticles inside the cells affected enterocytes viability and triggered the production of pro-inflammatory cytokines, including TNF-α and IL-8. Taken together these data indicate that nano-sized TiO2 particles exert detrimental effects on the intestinal epithelium layer."
Pro-inflammatory adjuvant properties of pigment-grade titanium dioxide particles are augmented by a genotype that potentiates interleukin 1β processing, Riedle S et al., Particle and Fibre Toxicology, 14:51, décembre 2017 : "Dietary TiO2 particles have an impact on the production of the pro-inflammatory cytokines IL-1β and TNF-α by LPS pre-stimulated murine macrophages in vitro, and TiO2 particles can act as IL-1β-inducing adjuvants for bacterial MAMPs that contain MDP moieties. The impact of this adjuvant effect is genotype-dependent. Primed macrophages from Nod2 m/m mice showed an elevated IL-1β response to incubation with TiO2 particles and peptidoglycan compared to cells from WT mice."
Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions, Proquin H et al., Mutagenesis, 32 (1): 139-149, janvier 2017 : "E171, MPs and NPs are stable in cell culture medium with 0.05% BSA. The capacity for ROS generation in a cell-free environment was highest for E171, followed by NPs and MPs. Only MPs were capable to induce ROS formation in exposed Caco-2 cells. E171, MPs and NPs all induced single-strand DNA breaks. Chromosome damage was shown to be induced by E171, as tested with the micronucleus assay in HCT116 cells. In conclusion, E171 has the capability to induce ROS formation in a cell-free environment and E171, MPs and NPs have genotoxic potential. The capacity of E171 to induce ROS formation and DNA damage raises concerns about potential adverse effects associated with E171 (TiO2) in food".
Impact of E171 food additive (tio2) on human intestinal cells: from toxicity to impairment of intestinal barrier function (p.150), Dorier M et al., Nanosafe 2016, novembre 2016 : "TiO2-NPs and E171 food additive may modify the intestinal barrier function. They may thus be involved in the development and/or aggravation of inflammatory pathologies like inflammatory bowel diseases" ; ces résultats sont issus de la thèse de Marie Dorier dont les travaux menés entre 2013 et 2016 montrent que le E171 et les nanoparticules de TiO2 sont modérément toxiques. Ils n'engendrent pas de mortalité cellulaire ni de cassures à l'ADN. Néanmoins, ils provoquent une accumulation d'espèces réactives de l'oxygène (ROS) intracellulaires et modulent certains marqueurs impliqués dans le stress oxydant, le stress du réticulum endoplasmique et l'inflammation. Ils impactent également la sécrétion et la composition de la couche de mucus, l'expression des transporteurs ABC, qui sont des paramètres impliqués dans la fonction de barrière de l'épithélium intestinal, le rendant possiblement plus vulnérable aux agressions extérieures.
28 - Cf. The effects of a human food additive, titanium dioxide nanoparticles E171, on Drosophila melanogaster - a 20 generation dietary exposure experiment, JovanovićB et al., Scientific Reports, 8 (version en ligne, décembre 2018) : "Exposure to E171 resulted in: a change in normal developmental and reproductive dynamics, reduced fecundity after repetitive breeding, increased genotoxicity, the appearance of aberrant phenotypes and morphologic changes to the adult fat body. Marks of adaptive evolution and directional selection were also exhibited. The larval stages were at a higher risk of sustaining damage from E171 as they had a slower elimination rate of TiO2 compared to the adults. This is particularly worrisome, since among the human population, children tend to consume higher daily concentrations of E171 than do adults. The genotoxic effect of E171 was statistically higher in each subsequent generation compared to the previous one. Aberrant phenotypes were likely caused by developmental defects induced by E171, and were not mutations, since the phenotypic features were not transferred to any progeny even after 5 generations of consecutive crossbreeding. Therefore, exposure to E171 during the early developmental period carries a higher risk of toxicity. The fact that the daily human consumption concentration of E171 interferes with and influences fruit fly physiological, ontogenetic, genotoxic, and adaptive processes certainly raises safety concerns."
29 - Comparative toxicity of a food additive TiO2, a bulk TiO2, and a nano-sized P25 to a model organism the nematode C. elegans, Ma H et al., Environmental Science and Pollution Research, 26(4) : 3556–3568, février 2019 : "a comparative toxicity study was performed on a food-grade TiO2 (f-TiO2), a bulk TiO2 (b-TiO2), and a nano-sized TiO2 (Degussa P25), and in the nematode Caenorhabditis elegans. The f-TiO2, b-TiO2, and P25 had a primary particle size (size range) of 149 (53–308) nm, 129 (64–259) nm, and 26 (11–52) nm, respectively. P25 showed the greatest phototoxicity with a 24-h LC50 of 6.0 mg/L (95% CI 5.95, 6.3), followed by the f-TiO2 (LC50 = 6.55 mg/L (95% CI 6.35, 6.75)), and b-TiO2 was the least toxic. All three TiO2 (1–10 mg/L) induced concentration-dependent effects on the worm’s reproduction, with a reduction in brood size by 8.5 to 34%. They all caused a reduction of worm lifespan, accompanied by an increased frequency of age-associated vulval integrity defects (Avid). The impact on lifespan and Avid phenotype was more notable for P25 than the f-TiO2 or b-TiO2. Ingestion and accumulation of TiO2 particles in the worm intestine was observed for all three materials by light microscopy. These findings demonstrate that the food pigment TiO2 induces toxicity effects in the worm and further studies are needed to elucidate the human health implication of such toxicities."
33 - Cf. Titanium Dioxide Nanoparticles Can Exacerbate Colitis, University of Zurich, 19 juillet 2017 : Des chercheurs de l'université de Zurich tirent la sonnette d'alarme sur les inflammations et dommages créés par les nanoparticules de dioxyde de titane sur le mucus intestinal de souris. Ils recommandent aux personnes atteintes de colites d'éviter les aliments contenant ces particules de dioxyde de titane.
Archives : Télécharger la version archivée du 14/05/2018 de la présente note en cliquant ici.
Page initialement mise en ligne en mai 2018
Après l'alimentation, la suspension du dioxyde de titane dans les dentifrices et les médicaments ?
Après l'alimentation, la suspension du dioxyde de titane dans les dentifrices et les médicaments ?
Cette page a vocation à être complétée et mise à jour avec l'aide des adhérents et veilleurs d'Avicenn. Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr.
Par l'équipe Avicenn - Dernier ajout octobre 2020
Depuis une dizaine d'années, des associations demandent l'interdiction des (nano)particules de dioxyde de titane dans les produits grande consommation1.
Ces demandes se sont accéléré ces derniers mois, avec à la clé l'obtention de la suspension du dioxyde de titane dans les denrées alimentaires en 2020.
Le lendemain de la rencontre, Agir pour l’Environnement a indiqué dans un communiqué de presse que "la rencontre a été très décevante" :
- Il n’a pas été question, pour l’instant, d’élargir le champ de l’arrêté aux produits autres qu’alimentaires pour des divers prétextes. Une des raisons évoquées : le projet d’arrêté a été conçu pour un cadre alimentaire…Or ce cadre peut être modifié dans la rédaction de l’arrêté.
- Sur l’absence d’étiquetage [nano] du dioxyde de titane : la DGCCRF n’a pas encore mené d’enquêtes sur les dentifrices mais indique qu’elle l’aurait planifié pour les mois à venir.
Les représentants du Ministère ont confirmé que l’arrêté de suspension du dioxyde de titane dans l’alimentation sera bien pris mi-avril 2019, dans la foulée de la publication de l’avis de l’ANSES.
Pour Agir pour l’Environnement, ce statu quo marque une nouvelle fois la frilosité du ministère de l’Economie, incapable de protéger les consommateurs, les enfants et les malades, d’une exposition à une substance chimique dangereuse et inutile dans les aliments, dentifrices et médicaments.
Interrogée en juin 2019 par Challenges2, Anne Dux, directrice des affaires scientifiques de la Febea, le syndicat professionnel du secteur cosmétique, aurait répondu que dans les dentifrices, il n'y a pas de substitut possible au TiO2 comme colorant blanc car le le dioxyde de titane serait le seul à ne pas interagir avec les autres éléments. L'obstacle à sa suppression selon elle : "les études montrent que dans l'esprit des consommateurs, le blanc est associé à la propreté et que cela les incite à davantage se brosser les dents". Pourtant des marques s'en sont toujours passé, d'autres ont déjà commencé à le retirer de leurs dentifrices et certaines font même de l'absence de TiO2 dans leur dentifrice un argument marketing3.
En août 2019, la sénatrice LR des Alpes-Maritimes, Colette Giudicelli, avait déposé une question écrite (n°11991) à la ministre des solidarités et de la santé de l'époque, sur la présence de dioxyde de titane nanoparticulaire dans les dentifrices et certains médicaments. Fin septembre, Avicenn apprenait que la question, bien que transmise au Ministère de l'économie, des finances et de la relance, avait été "retirée pour cause de décès".
Le 7 octobre 2020, une étude française a montré que l'exposition de la femme enceinte au dioxyde de titane conduit à une accumulation de nanoparticules de TiO2 dans le placenta et à une contamination du foetus. Elle a été menée par des scientifiques français·es de l'INRAE, du LNE, du Groupe de Physique des Matériaux de Rouen, du CHU de Toulouse, de l’Université de Picardie Jules Verne et de l’Ecole Nationale Vétérinaire de Toulouse. Elle vient confirmer des présomptions fortes, suite à des publications chez l'animal. Comme le rappelle le communiqué de l'INRAE, l'utilisation du dioxyde de titane dans les denrées alimentaires a été suspendue en France, mais il est encore utilisé dans les dentifrices, écrans anti-UV, des crèmes et poudres cosmétiques et les produits pharmaceutiques, d'où les demandes croissantes en faveur de son interdiction dans les cosmétiques et les médicaments.
Dans un communiqué publié le même jour et suivi, le 22 octobre du lancement d'une pétition "stop titane" demandant la prolongation de l'interdiction du dioxyde de titane dans l'alimentation et son élargissement aux médicaments et dentifrices.
Le 16 octobre 2020, Que Choisir a également a réitéré son appel à un élargissement de l’interdiction de cet additif aux médicaments et cosmétiques susceptibles d’être ingérés (dentifrice, rouge à lèvres…).
A suivre donc...
⇒ Vos avis et analyses nous intéressent : n'hésitez pas à nous les envoyer (redaction(at)veillenanos.fr) afin que nous puissions donner à nos lecteurs le point de vue de l'ensemble des acteurs concernés.
et de nouveau à la fin de la BD nano co-financée par Agir pour l'Environnement, Générations futures, France Nature Environnement et le Comité pour un développement durable en santé (C2DS) et publiée en octobre 2017.
Ce site est édité par l'association Avicenn qui promeut davantage de transparence & de vigilance sur les nanos.
Pour soutenir nos travaux, suivez et partagez nos infos :