Un total de 6 pages ont été trouvées avec le mot clé relargage.
Les travaux de l'INERIS sur les nanos
Les travaux de l'INERIS sur les nanos
Par MD - DL et l'équipe Avicenn - Dernière modification avril 2018 - Mises à jour nécessaires
Cette fiche a vocation à être complétée et mise à jour avec l'aide des adhérents et veilleurs de l'Avicenn. Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr. Sommaire
L'Institut National de l'Environnement Industriel et des Risques (INERIS) a pour mission de contribuer à la prévention des risques que les activités économiques font peser sur :
la santé,
la sécurité des personnes et des biens,
l'environnement.
L'INERIS a mis en place une "task force nanos" chargée d'animer la thématique et de regrouper les compétences en caractérisation des dangers (éco-) toxicologiques et physico-chimiques, métrologie, sécurité des procédés, évaluation des expositions, analyse des risques chroniques et accidentels.
Fin 2013, l'INERIS comptait une quarantaine de personnes travaillant sur les nanos.
2018 : Publication d'un bulletin bimestriel de veille "nanomatériaux"
L'INERIS s'est dotée, sur le site de l'Institut à Verneuil-en-Halatte (Oise) en Picardie, d'une plate-forme nano-sécurisée S-Nano1 pour renforcer l'expertise et la recherche sur les risques liés aux nanotechnologies.
Cette infrastructure de 300 m2 est composée de quatre laboratoires et de locaux à empoussièrement de nanoparticules contrôlé.
Cette plateforme est dédiée à la métrologie et à la caractérisation des potentiels de danger des nanomatériaux dans le cadre de la sécurité industrielle. Elle doit permettre, entre autres, d'étudier :
Participation à des programmes nationaux, européens et internationaux
En France :
L'INERIS participe au dispositif de surveillance EpiNano pour ce qui concerne l'évaluation des expositions aux nanomatériaux et la métrologie des aérosols aux postes de travail
L'INERIS participe au programme européen NANoREG et coordonne désormais le programme NanoREG II qui réunit 38 partenaires et vise à développer et implémenter des outils à finalité réglementaire, des outils d'aide à la catégorisation des dangers des substances et des outils d'aide à la conception de produits plus sûrs dans une approche substance (dangers intrinsèques), production (sécurité industrielle) et usage (maitrise du cycle de vie).
L'INERIS est également partenaire du projet européen NANOFASE coordonné par NERC (Natural Environment Research Council) et qui vise à comprendre et maitriser le comportement des nanomatériaux dans l'environnement, en proposant une approche intégrée de maitrise des risques.http://nanofase.eu/
L'INERIS pilote le développement de nouveaux protocoles pour l'inflammation et l'explosivité des nanomatériaux dans le cadre du CEN/TC 352, comité technique européen dédié aux nanotechnologies
Au niveau international :
L'INERIS fait aussi partie du groupe d'experts de l'OCDE en charge de stabiliser des documents de référence sur la problématique des nanomatériaux et de définir les outils, moyens d'essais et modes opératoires devant être mis en œuvre pour leur gestion (stockage, valorisation, recyclage).
Des missions d'appui, d'expertise, de formation et de certification
L'INERIS réalise également des missions d'appui (technique, réglementaire), d'expertise (publique ou privée), de formation et de certification.
Guide méthodologique pour l'évaluation de l'exposition professionnelle associée à la mise en œuvre de nanomatériaux
En décembre 2011, il a publié un guide méthodologique pour l'évaluation de l'exposition professionnelle associée à la mise en œuvre de nanomatériaux2 avec ses partenaires (CEA et INRS) : les potentiels d'émission et d'exposition professionnelle aux aérosols lors d'opérations mettant en œuvre des nanomatériaux sont en effet considérés par l'Agence européenne pour la sécurité et la santé au travail (OSHA) comme l'un des principaux risques émergents sur les lieux de travail.
Le Guide propose des recommandations sur les critères de mesure à prendre en compte pour caractériser l'aérosol et le différencier de l'aérosol ambiant (taille des particules, concentration, morphologie, composition chimique, fraction présente dans les voies respiratoires).
Cinq phases sont déclinées :
- les trois premières déterminent si le procédé génère des nanoparticules et confirment la nécessité d'une campagne de mesure
- La quatrième est la campagne de mesure (avec deux niveaux d'approche)
- la dernière consiste à analyser les résultats.
Sa mise en application et un travail d'harmonisation sont en cours au plan européen (évaluation de 6 postes de travail conduite dans la cadre d'un projet européen, création d'un groupe de travail dédié au sein du Comité Européen de Normalisation).
Certifications volontaires : Nano-CERT et Nano-CERT MTD
Pour accompagner les recommandations du Guide et renforcer la sécurité au poste de travail par la formation qualifiante des intervenants (opérateurs, préventeurs sécurité, formateurs et personnels de secours), l'INERIS a été à l'initiative d'une démarche de certification volontaire appelée Nano-CERT3.
Le référentiel a été adopté par un comité de certification constitué du CEA, du CNRS, d'industriels, de représentants des ONG et d'organismes de formation.
Une autre certification volontaire a également été engagée en 2012 sur les meilleures techniques disponibles (MTD) pour la prévention collective des opérateurs4.
Une aide financière pour les PME et ETI qui souhaitent maîtriser les risques liés aux nanomatériaux
Les PME et les ETI qui font appel à l'INERIS bénéficient d'un cofinancement respectif de 50% et de 25% du coût des prestations
relatives aux nanos via le dispositif d'aide financière GERINA (GEstion des RIsques NAnomatériaux) mis en place par BPIFrance et soutenu par la DGCIS (Direction Générale de la Compétitivité Industrielle et des Services).
Le MPS® instrument de caractérisation des nano et microparticules dans l'air ambiant
Le 30 juin 2014, l'INERIS et ECOMESURE ont annoncé5 le développement d'un instrument de caractérisation des nano et microparticules dans l'air ambiant. Ce dispositif de prélèvement, le MPS® (Mini Particle Sampler) est utilisable pour effectuer des prélèvements dans les ambiances de travail, dans le cadre du contrôle des émissions industrielles, pour la gestion de la pollution de l'air intérieur et de la pollution atmosphérique6.
Reste à savoir comment lire les prélèvements, ce qui nécessite une microscopie électronique à transmission (MET).
En 2013, le coût était estimé à 5000 € pour le préleveur et 10 000 € pour le compteur.
Un autre défi reste encore à relever : celui de l'interprétation des résultats, qui nécessite une expertise pointue.
Les résultats du projet NanoFlueGas sur les émissions des déchets nano-structurés dans les procédés d'incinération
L'INERIS, les Mines de Nantes et Trédi, filiale du groupe Séché Environnement ont conduit, avec le soutien de l'Ademe, le projet NanoFlueGas, qui constitue l'un des premiers projets sur la sécurité des nanomatériaux en fin de vie, notamment dans le cadre de la filière incinérative.
Ces travaux exploratoires montrent, d'une part, que la nanostructure de certains déchets peut être transférée dans les émissions brutes en sortie de four qui sont générées par le processus de combustion. D'autre part, les premiers résultats indiquent que les systèmes d'épuration de type filtre à manche font preuve d'une bonne efficacité pour traiter ces émissions contenant des nanos7.
Les résultats d'une étude sur l'émissivité de particules par un nanorevêtement de dioxyde de titane (BTP)
Une étude de l'INERIS et de l'université de Compiègne publiée début 2015 a montré qu'un nanorevêtement de dioxyde de titane existant dans le commerce, une fois appliqué sur une façade de bâtiment, peut se détériorer sous l'effet du soleil et de la pluie ; ce faisant, il entraîne le relargage de particules de titane dans l'air en quelques mois - et qui plus est, sous forme de particules libres (plus dangereuses que lorsqu'elles sont agglomérées entre elles ou avec des résidus d'autres matériaux)8, il convient donc dans ces conditions de minimiser le recours aux nanorevêtements.
Source : Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather, Shandilya, N et al., Environmental Science & Technology, 49(4): 2163-2170, 2015
D'autres études sont en cours dans le cadre du projet Nano-Data12. Lire aussi SUR NOTRE SITE :
Nano et Santé au travail (3b/3) : Recommandation b : Minimiser l'exposition des travailleurs
Nano et Santé au travail (3b/3) : Recommandation b : Minimiser l'exposition des travailleurs
Par MD et l'équipe Avicenn - Dernier ajout novembre 2020
Cette fiche fait partie de notre Dossier Nano et Santé au travail. Elle a vocation à être progressivement complétée et mise à jour avec l'aide des adhérents et veilleurs de l'Avicenn. Vous pouvez contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr.
Une protection défaillante des travailleurs exposés aux nanomatériaux
Des études récentes ont montré que les entreprises, en France comme à l'étranger, sont peu à même d'assurer la protection de la santé et de la sécurité de leurs travailleurs1.
Depuis quelques années, la situation s'améliore lentement : des protections individuelles et des équipements de protection collectives sont mis en place pour les personnels des laboratoires de recherche et développement notamment. Ces questions de sécurité d'utilisation et risques pour la santé sont de plus en plus prises en compte par les CHSCT dont les membres sollicitent des formations sur ce sujet.
Du fait des nombreux effets potentiellement néfastes des nanomatériaux sur la santé des travailleurs, il y a en effet nécessité de minimiser l'exposition des travailleurs aux nanomatériaux, dans le respect du principe de précaution.
Eviter l'exposition des travailleurs aux nanomatériaux...
L'approche générale de prévention du risque mise en place pour les produits chimiques dangereux doit s'appliquer aux nanomatériaux.
Il s'agit :
au mieux, d'éliminer les nanomatériaux et de leur substituer, si nécessaire, des matériaux non - en tout cas moins - dangereux (notons au passage le décalage d'une telle recommandation avec les politiques d'incitation à l'accélération de la commercialisation des nanomatériaux...) ;
à défaut, de réduire l'exposition au niveau le plus bas possible (selon le principe ALARA), en maintenant au minimum le nombre des travailleurs potentiellement exposés aux nanomatériaux ainsi que la durée et le niveau d'exposition.
A cet effet, différentes mesures doivent être strictement appliquées (pour plus de détails, se référer aux publications de l'INRS2) :
limiter certaines opérations critiques (le transvasement, la pesée, l'échantillonnage, ...)
empêcher l'émission de nanomatériaux à l'air libre :
manipuler les nanomatériaux sous forme de suspension liquide, de gel, en pastilles ou incorporés dans des matrices plutôt que sous forme de poudres (qui sont plus volatiles, avec une plus grande propension à se diffuser dans l'air)
capter les polluants à la source (boîtes à gants, hottes de type chimique et autres moyens d'aspiration adaptés à l'utilisation des nanoparticules)
filtrer l'air des lieux de travail avec des filtres à fibres à très haute efficacité
nettoyer les surfaces à l'aide de linges humides et d'aspirateurs spéciaux
stocker les nanomatériaux :
dans des réservoirs ou des emballages doubles totalement étanches, fermés et étiquetés
et dans des locaux frais, bien ventilés, à l'abri du soleil et à l'écart de toute source de chaleur ou d'ignition et des matières inflammables
installer des vestiaires doubles, contigus à la zone de travail afin de séparer les vêtements de ville des vêtements de travail
limiter les déchets, les traiter spécifiquement
protéger directement les travailleurs exposés :
masques filtrants4, respirateurs, lunettes avec protection latérale, gants, couvre-chaussures, combinaisons sans revers et en membrane non tissée (le coton est déconseillé)
attention cependant : la possibilité de passage de nanoparticules à travers certains types de gants en nitrile ou en latex ainsi qu'à travers les combinaisons en polyéthylène a été établie par des équipes de recherche (Erest) de l'Ecole de technologie supérieure de Montréal et par l'IRSST (Canada), contredisant les résultats de chercheurs du Commissariat à l'énergie atomique (CEA) de Grenoble qui n'avaient pas trouvé de passage des nanoparticules à travers les membranes en nitrile des gants de protection5
Les femmes enceintes doivent être particulièrement protégées de toute exposition aux nanomatériaux6.
Il n'existe pas, en France, de valeur limite d'exposition au poste de travail (VLEP) spécifique pour les nanomatériaux, mais des travaux sont menés, en particulier sur le TiO2 et sur le noir de carbone :
Quelques valeurs limites ont été établies à l'étranger pour certains nanomatériaux (depuis 2007 au Royaume-Uni, depuis 2011 aux Etats-Unis et depuis 2013 en Allemagne)7. A titre d'illustration, les VLEP recommandées aux Etats-Unis sont :
0,3 mg/m3 pour les nanoparticules de dioxyde de titane (TiO₂) (celle du TiO₂ "ultrafin" (< 100 nm) 8
1µg/m3 pour les nanotubes de carbone (NTC) et les nanofibres de carbone9
En 2014, la Commission européenne a mentionné également des valeurs limites d'exposition aux nanoparticules et des valeurs sans effet spécifique10.
En novembre 2019, l'agence européenne pour la santé et la sécurité au travail a attribué le Prix des bonnes pratiques "Lieux de travail sains" 2018-2019 à Atlas Copco Industrial Technique, une entreprise manufacturière suédoise qui a adopté une approche de précaution pour minimiser l’exposition des travailleurs aux nanotubes de carbone11.
Des professionnels soulignent néanmoins que les valeurs limites d'exposition ne sont pas nécessairement pertinentes pour la prise en compte des réactions immunitaires et de la cancérogénèse, de très faibles doses pouvant être aussi toxiques que de fortes doses.
L'INERIS propose depuis 2012 une certification des personnes et des meilleures techniques disponibles pour les postes de travail en présence de nanomatériaux. Sur la base des référentiels Nano-CERT et Nano-CERT / MTD, l'INERIS certifie les compétences des personnes (opérateurs et préventeurs) et les dispositifs de protection (performance des barrières, sûreté de fonctionnement de ces dispositifs). Ces référentiels ont été adoptés par un comité de certification constitué du CEA, du CNRS, d'industriels, de représentants d'une ONG, d'organismes de formation et des fabricants de dispositifs de sécurité.
A noter, le fait que la certification des personnes est "volontaire", car il n'est pas obligatoire de dispenser une formation "certifiante" (mais l'employeur a tout de même l'obligation de fournir une formation à la sécurité du poste de travail).
Autre limite : les certifications portent sur le process, le matériel, le poste de travail et les compétences humaines... mais ne portent pas sur les nanomatériaux eux-mêmes, dont le danger n'est pas évalué dans ce cadre.
... sans oublier les travailleurs extérieurs au site "nano"
L'exposition des travailleurs intérimaires et des sous-traitants doit également être réduite au minimum12.
En cas d'accident ou d'incendie, outre les travailleurs présents, il est nécessaire également que les équipes de secours, pompiers13, etc. soient bien informés de la présence de nanomatériaux sur le site et bien protégés.
... ni de minimiser les potentielles expositions professionnelles aux nanomatériaux en aval de la chaîne de production.
Les précautions précédentes ont été définies d'abord pour minimiser l'exposition des travailleurs manipulant expressément des nanomatériaux, principalement lors des étapes de :
recherche en laboratoires
production de nanomatériaux (laboratoires, ateliers d'industrie chimique, start-ups)
transformation ou intégration des nanomatériaux dans des produits (labos de recherche, cosmétiques, plasturgie, peintures, revêtements, ...)
Mais elles doivent également être appliquées pour les activités périphériques, qui ne doivent pas être négligées, notamment :
le nettoyage, l'entretien et la maintenance des locaux et des équipements (y compris des filtres)
la collecte, le transport, le traitement (recyclage) et/ou l'élimination des déchets qui devraient être traités comme des déchets dangereux14. (de même que tout ce qui a été en contact avec des nanomatériaux : conditionnements, filtres des installations de ventilation, sacs d'aspirateurs, équipements de protection respiratoire, combinaisons, etc.)
La confédération syndicale néerlandaise (FNV) a ainsi recommandé en 2011 d'évaluer le cycle de vie depuis leur entrée dans l'entreprise jusqu'à leur sortie (qu'il s'agisse de produits finis ou semi-finis ou de déchets)15.
L'institut allemand pour la sécurité et la santé au travail a alerté dès 2007 sur le fait que les points d'interface dans le processus de production doivent être contrôlés16 au même titre que les zones de manipulation.
Il est ainsi nécessaire d'identifier et de supprimer les autres sources potentielles d'émission des nanomatériaux sur l'ensemble des sites où sont utilisés / fabriqués / stockés des nanomatériaux.
→ Voir notre fiche dédiée à la mesure des émissions ici
Un autre défi souvent oublié : la protection des nombreux utilisateurs professionnels de produits contenant des nanomatériaux
Ils sont donc vulnérables et moins (in)formés et protégés que les chercheurs et opérateurs des entreprises directement impliquées dans des activités nano et qui disposent - théoriquement du moins - de la formation, des protocoles et des équipements nécessaires.
Debia M et Beaudry C, Exposition potentielle par inhalation et efficacité du confinement quand on utilise des enceintes de sécurité pour la manutention des nanoparticules, résumé en français de "Potential inhalation exposure and containment efficiency when using hoods for handling nanoparticles", J Nanopart Res, 15(9):1880, 2013 in Nanoparticules - maîtrise de l'exposition : concepts et réalisations, Bulletin de veille scientifique (BVS) de l'ANSES, mars 2014
NIOSH et al. (USA), The GoodNanoGuide, an Internet-based collaboration platform specially designed to enhance the ability of experts to exchange ideas on how best to handle nanomaterials in an occupational setting
3 - Dès 2009, le Parlement européen avait demandé spécifiquement à la Commission d'étudier la nécessité de réviser la législation en matière de protection des travailleurs en ce qui concerne, notamment, l'utilisation des nanomatériaux uniquement dans des systèmes fermés ou de toute autre façon garantissant la non-exposition des travailleurs tant qu'il n'est pas possible de détecter et de contrôler l'exposition de manière fiable : cf. Résolution du Parlement européen du 24 avril 2009 sur les aspects réglementaires des nanomatériaux (article 15)
5 - Voir notamment :
- Mesure de l'efficacité des gants de protection contre les nanoparticules dans des conditions simulant leur utilisation en milieu de travail, IRSST, 14 février 2018
- "Développement de méthodes de mesure des propriétés barrières des membranes polymères et textiles contre les nanoparticules en milieu liquide - Application aux vêtements et aux gants de protection" in Restitution du programme national de recherche environnement santé travail : Substances chimiques et nanoparticules : modèles pour l'étude des expositions et des effets sanitaires : résumé dans le Dossier du participant (p.15) et Diaporama en ligne, novembre 2013.
Des recherches sont en cours au Canada pour en savoir plus : voir la page dédiée au projet de recherche"Mesure de l'efficacité des gants de protection contre les nanoparticules dans des conditions simulant leur utilisation en milieu de travail", réalisé conjointement par l'Université McGill, l'École de technologie supérieure, l'Université de Montréal et financé par l'IRSST et NanoQuébec : de premiers résultats montrent une efficacité variable selon les modèles de gants (deux modèles en nitrile ont présenté une efficacité médiocre, l'un d'entre eux devant même être déconseillé lors de la manipulation de nanoparticules en solution aqueuse) : cf. "Mesure de l'efficacité des gants de protection contre les nanoparticules dans des conditions simulant leur utilisation en milieu de travail", IRSST, octobre 2016
La Commission européenne a demandé au Comité européen de normalisation (CEN) de donner son avis sur de nouvelles exigences de normalisation pour différents EPI - gants, chaussures de protection, filtre et masques, vêtements non tissés - contre les nanoparticules solides. Le Comité technique 162 WG 3 du CEN doit réviser le programme de travail 'Vêtements de protection contre les produits chimiques, les agents infectieux, et la contamination radioactive', qui correspond à la protection contre les particules au format nano, ainsi que le programme de travail relatif aux 'filtres à air pour la propreté générale de l'air'.
les études sur le passage des nanomatériaux à travers la barrière placentaire que nous avons compilées ici
les éléments d'alerte concernant la reprotoxicité des nanomatériaux, dont les effets néfastes sur le développement embryonnaire (reprotoxicité) compilés là
Travailler peut nuire gravement à votre santé, Sous-traitance des risques, mise en danger d'autrui, atteintes à la dignité, violences physiques et morales, cancers professionnels, Annie Thébaud-Mony, La Découverte, 2008
Par l'équipe Avicenn - Dernière modification mai 2020
Ce dossier a vocation à être complété et mis à jour avec l'aide des adhérents et veilleurs d'Avicenn.
Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant des références à l'adresse redaction(at)veillenanos.fr.
La commercialisation et l'utilisation de nanomatériaux manufacturés se sont considérablement accrues depuis le début des années 2000 dans de nombreux domaines : cosmétiques, textiles, électroménager, équipements de sport, vitres et matériaux de construction, voitures, aéronautique, bateaux, alimentation, etc. De plus en plus de nanomatériaux, nanoparticules ou résidus de nanoparticules sont présents dans les eaux usées et conduits pour partie jusqu'aux stations d'épuration, puis dans les rivières et cours d'eau. Avec quelles conséquences pour la faune et la flore aquatiques ? Quid des microorganismes des sols sur lesquels sont épandues les boues de station d'épuration ?
Des inquiétudes se profilent parmi un nombre croissant d'acteurs. Qui fait quoi sur ces différents aspects ?
Sur toutes ces questions, seules sont aujourd'hui accessibles des informations éparses, souvent difficiles à comprendre pour le non spécialiste ou n'abordant qu'un aspect particulier sans donner de vision d'ensemble.
Ce dossier initié en 2015 rassemble donc les informations disponibles ainsi que les questions qui se posent aujourd'hui et qui pourraient devenir un problème en l'absence d'action de la part des différentes institutions concernées. Il s'agit d'une base que nous souhaitons compléter et mettre à jour en fonction de l'évolution des connaissances : vos contributions sont les bienvenues ! En savoir + Sommaire
Fiche initialement mise en ligne entre février 2015
Nanomatériaux / Nanoparticules / Nanotechnologies et Eaux : Bibliographie
Nanomatériaux / Nanoparticules / Nanotechnologies et Eaux : Bibliographie
Par l'équipe Avicenn - Dernier ajout octobre 2020
Cette sélection de documents compilés pour préparer notre dossier Nano et Eau a vocation à être progressivement complétée et mise à jour avec l'aide des adhérents et veilleurs d'Avicenn.
Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant des références à l'adresse redaction(at)veillenanos.fr. Sommaire
Vulnerability of ground water resources regarding emerging contaminants and nanoparticles : Résumé et vidéo, Hofmann T, Harvard Chan School's NIEHS Center for Environmental Health, 5 avril 2018
Les nanoparticules d'argent en milieu naturel : cas d'un estuaire, Millour M, UQAR (Université du Québec à Rimouski), intervention au 83e du Congrès de l'Acfas, Colloque 210 - Présence, persistance, devenir et effets des nanomatériaux dans l'environnement, mai 2015
Les nanoparticules : quels risques en Seine ?, Yann Sivry et al., communication aux 22èmes Journées Scientifiques de l'Environnement - Reconquête des environnement urbains : les défis du 21ème siècle, février 2011
Les véritables effets des nanoparticules dans leur environnement, CORDIS, mars 2018 : "La plupart des nanomatériaux synthétiques émis dans l’environnement arriveront tôt ou tard dans nos océans et nos mers. Le projet SOS-Nano a conçu des tests afin de prédire leur toxicité pour le milieu marin. Les chercheurs ont utilisé un ingénieux système naturel d’exposition à l’eau in vivo pour tester les effets des nanoparticules d’oxyde métallique : l’oxyde de zinc (ZnO) et le dioxyde de manganèse (MnO2). Les larves d’huîtres ont souffert d’un niveau élevé de toxicité occasionnée par le ZnO, en revanche, les NP de MnO2 n’étaient pas toxiques dans tous les scénarios d’exposition."
Écrans UV nanos : un danger pour la vie marine, L'Observatoire des Cosmétiques, 5 septembre 2014 : Des chercheurs espagnols ont ainsi estimé que l'activité touristique sur une plage de Méditerranée durant une journée d'été peut relarguer de l'ordre de 4 kg de nanoparticules de dioxyde de titane dans l'eau, et aboutir à une augmentation de 270 nM/jour de la concentration en peroxyde d'hydrogène (une molécule au potentiel toxique, notamment pour le phytoplancton qui constitue la nourriture de base des animaux marins) → Résumé vulgarisé en français de l'article suivant : Sunscreens as a Source of Hydrogen Peroxide Production in Coastal Waters, Sánchez-Quiles D and Tovar-Sánchez A, Environ. Sci. Technol., 48 (16), 9037-9042, 2014
Par l'équipe Avicenn - Dernière modification décembre 2020
Ce dossier synthétique a vocation à être complété et mis à jour. Vous pouvez contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr. Sommaire
Les "promesses" des nanos en matière d'environnement
Les nanotechnologies sont souvent présentées comme une solution miracle à de nombreux problèmes d'environnement. En 2009, l'Union des Industries Chimiques (UIC) affirmait ainsi que "les nanomatériaux contribuent à réduire l'empreinte environnementale des activités : pneus à basse consommation, véhicules moins gourmands en énergie, habitations mieux isolées, téléphones cellulaires et ordinateurs plus autonomes et moins énergivores. (...) Les nanotechnologies interviennent de plus en plus dans la dépollution des sols et des eaux, le stockage du CO2 ou encore la production et le stockage d'énergies renouvelables. Au niveau industriel, elles permettent de fabriquer des produits manufacturés en consommant moins d'énergie et de matières premières"1.
Ainsi que le rapportait le Président de la Commission nationale du débat public en avril 2010 à l'issue du débat, ce discours est entretenu par des institutions de recherche française : "Qu'attend-on de positif des nanotechnologies ? Selon le CNRS et le CEA, un des objectifs est de contribuer au développement d'une société économe en ressources naturelles et en énergie, porteuse d'une forte exigence de préservation de la santé et de l'environnement"2.
Dépollution et remédiation des sols et des eaux par les nanos
Selon une étude réalisée pour l’Ademe en 2010, le marché de la dépollution était de 470 millions d’euros. Une piste de solution serait d'utiliser des nanoparticules de fer pour dépolluer les sols.
Des chercheurs du Gisfi (Groupement d’intérêt scientifique sur les friches industrielles) ont réitéré en mars 2019 l'intérêt de la nanoremédiation. Les nanoparticules de fer sont les plus utilisées. Elles permettent de décontaminer des eaux et des sols chargés en composés chlorés, qui figurent parmi les polluants les plus répandus. Elles sont aussi efficaces pour le chrome, en réduisant l’une de ses formes particulièrement toxiques. Elles peuvent être injectées dans les nappes et mélangées à des sols, jusqu’à des profondeurs d’une douzaine de mètres, permettant dans certains cas de venir à bout de la quasi-totalité de la pollution.
Les auteurs soulignent cependant les incertitudes sur les risques, "les barrières à franchir d’ordre réglementaire et concernant l’acceptabilité de ces techniques par les entreprises, les clients, les élus et le public".
Les études continuent avec le Gisfi, la région Grand Est et quatre partenaires européens (Finlande, Grèce, Hongrie et Italie) dans un nouveau programme TANIA TreAting contamination through NanoremedIAtion (1 285 735 € pour des travaux de janvier 2017 à décembre 2021).
Autres "promesses" des nanomatériaux et/ou nanotechnologies en matière d'environnement
A travers notre veille sur le web, nous repérerons également de nombreuses annonces de développement d'applications nanos prétendument "vertes"3.
La vigilance est néanmoins de mise : outre qu'il existe beaucoup d'incertitudes sur les risques associés à ces développements (voir plus bas), certains s'interrogent sur la réalité et l'empreinte environnementale de ces promesses.
Quelle réalité ?
De nombreuses associations environnementales, parmi lesquelles les ONG réunies au sein du Bureau européen de l'environnement (BEE) et du Réseau international pour l'élimination des Polluants organiques persistants (IPEN), considèrent que les bénéfices affichés sont souvent exagérés, non testés et, dans un grand nombre de cas, à des années de pouvoir être concrétisés4.
Quel bilan écologique ?
Les nanotechnologies permettent d'obtenir une meilleure efficacité avec moins de quantités de produits ? C'est oublier la hausse de la démographie et des volumes de consommation... et l'association Les Amis de la Terre International redoute même que les nanotechnologies ne fassent en fait qu'accentuer la consommation et les coûts de l'énergie5.
Avec le BEE et l'IPEN4, ils soulignent également que les promesses environnementales associées aux nanos ne concernent souvent que l'utilisation ou l'exploitation des produits auxquels elles sont associées et ignorent l'empreinte environnementale des autres étapes du cycle de vie des produits - élaboration, fabrication, utilisation, recyclage ou élimination - lors desquelles l'environnement peut être déterioré.
Par exemple les recherches, l'extraction des matières premières, la fabrication et le traitement en fin de vie de certains nanomatériaux requièrent des installations et équipements plus sophistiqués que les procédés classiques, et également plus d'énergie, plus d'adjuvants (notamment d'eau) et parfois plus de solvants néfastes pour l'environnement6.
Les rejets de gaz à effet de serre générés par la production de certains nanomatériaux, le nanoargent notamment, peuvent être également plus importants7, or ils sont en cause dans le réchauffement climatique et l'épuisement de la couche d'ozone.
En outre, même pendant la seule phase de leur utilisation, certains produits présentent un faible rendement de production, à cause d'un coût énergétique élevé pour une durée de vie limitée (particulièrement tous les gadgets électroniques, smartphones en première ligne, utilisant micro et nano-électronique qui ne dépassent guère quelques années).
La production high-tech de nanomatériaux à base de carbone, tels que les fullerènes, nanotubes de carbone et nanofibres de carbone, est aujourd'hui extrêmement énergivore ; les gains d'énergie potentiellement liés à certaines de leurs utilisations - notamment, pour les véhicules, les économies de carburant liées au gain de poids qu'ils permettent d'obtenir - sont loin de compenser les coûts énergétiques liés à leur production. L'impact du cycle de vie des nanofibres de carbone pourrait être cent fois supérieur à celui des matériaux auxquels on les substitue (aluminium, acier ou polypropylène) dans l'aéronautique ou l'automobile par exemple8.
La facture énergétique dépend évidemment des quantités de nanomatériaux produites : lorsque de très petites quantités sont utilisées, par exemple dans le cas des nanotubes de carbone pour produire des films plastiques spéciaux, il peut y avoir un gain d'énergie9. Mais l'autre question qui émerge alors concerne les risques que peuvent poser ces nanotubes pour l'environnement. Ce qui nous amène à la question suivante...
Des risques pour l'environnement de plus en plus documentés mais encore insuffisamment cernés
Des données parcellaires font état d'effets potentiels préoccupants sur la faune et la flore
A forte concentration, des effets de nanotubes de carbone ont été constatés par exemple11 :
- sur des micro-organismes : effets sur la croissance et la viabilité de protozoaires et autres micro-organismes,
- sur des végétaux : diminution de la viabilité cellulaire ou de la quantité de chlorophylle de végétaux, impact (parfois positif, parfois négatif) sur la germination des graines et la croissance racinaire
- sur des organismes aquatiques : diminution du taux de fertilisation chez des petits crustacés, malformations, retards à l'éclosion voire augmentation du taux de mortalité des embryons du poisson zèbre
- sur des organismes terrestres : réduction de la mobilité voire mort de drosophiles, diminution du taux de reproduction de vers de terre.
Plus récemment, des chercheurs ont mis en évidence un lien entre l'incinération de thermoplastiques contenant des nanotubes de carbone et l'augmentation des émissions et de la toxicité des hydrocarbures aromatiques polycycliques (HAP)12.
La dissémination des nanoparticules manufacturées de dioxyde de titane peut être source de toxicité pour les environnements terrestres et aquatiques14.
Les nanoparticules contenues dans les crèmes solaires sont relarguées dans les eaux de baignade (de l'ordre de 4 kg de nanoparticules de dioxyde de titane par jour sur une plage espagnole), et aboutir à une augmentation de la concentration en peroxyde d'hydrogène, une molécule au potentiel toxique, notamment pour le phytoplancton qui constitue la nourriture de base des animaux marins15, ce qui peut donc avoir des conséquences sur toute la chaîne alimentaire !
En 2020, des travaux menés par des chercheurs français et espagnols ont montré que des nanoparticules d'oxyde de zinc sont absorbées par les roseaux, avec différents effets toxiques à la clé (réduction de leurs croissance, teneur en chlorophylle, efficacité photosynthétique et transpiration)16.
Mais ces données sont encore très parcellaires ; malgré le développement des recherches à ce sujet18, les incertitudes relatives aux risques posés par les nanomatériaux pour l'environnement sont nombreuses.
Les conditions d'expérimentation sont souvent très éloignées de celles rencontrées dans la réalité
De fait, la plupart des études menées jusqu'à présent ont été réalisées dans des conditions souvent très éloignées de celles rencontrées dans la réalité : leurs résultats sont donc peu généralisables et à considérer avec prudence.
Les nanomatériaux considérés sont en effet souvent synthétisés en laboratoire et donc différents des nanomatériaux et résidus de dégradation des nanomatériaux auxquels sont réellement exposés les écosystèmes et les populations humaines. Pour l'heure, les scientifiques ont en effet une connaissance très limitée des types de nanomatériaux qui sont incorporés dans les produits actuellement sur le marché, et a fortiori des résidus de dégradation des nanomatériaux relargués dans l'environnement tout au long du "cycle de vie" de ces produits ; ils ignorent également beaucoup de choses sur la mobilité et les transformations subies par ces derniers dans l'environnement : là encore de nombreux paramètres entrent en ligne de compte, comme le degré d'acidité ou de salinité19 de l'eau par exemple.
Les concentrations de nanomatériaux testés sont en outre plus importantes que celles estimées dans l'environnement (à cause des limites des appareils de détection et de mesure utilisés en laboratoire). Toutefois on ne peut écarter l'hypothèse que les effets constatés (ou d'autres) sur les écosystèmes pourraient également intervenir à des concentrations plus faibles ; on vient en outre d'avoir la preuve scientifique que certains nanomatériaux (de silice notamment) sont plus génotoxiques à faibles doses qu'à fortes doses20. En outre ces fortes concentrations permettent de simuler des situations de contamination aiguë et ponctuelle (par exemple un déversement accidentel sur un site de production, ou encore en cours de transport).
La situation s'améliore cependant (au niveau méthodologique s'entend), avec de nouvelles méthodes d'analyses pour étudier les effets de nanoparticules sur les écosystèmes21 - par exemple en utilisant des "mésocosmes" : d'énormes aquariums reproduisant un mini éco-système dans lesquels est étudié à différents dosages le comportement des nanoparticules en contact avec des plantes, des poissons, du sol et de l'eau.
Les effets néfastes du nanoargent sur des plantes et micro-organismes mentionnés plus haut ont également été observés dans des conditions expérimentales "réalistes"13.
L'évaluation des risques se heurte à la complexité due à la multitude de paramètres à prendre en compte
Le problème rencontré par les scientifiques pour évaluer les effets des nanomatériaux sur l'environnement vient notamment du grand nombre de paramètres à prendre en compte et des multiples combinaisons dues aux variations de beaucoup d'entre eux :
- d'une part la toxicité et l'écotoxicité des nanoparticules varient selon leurs caractéristiques physico-chimiques (dimension, forme, structure, état de charge, degré d'agglomération, composition, solubilité, etc.) qui varient elles-mêmes selon les conditions dans lesquelles les nanoparticules sont synthétisées, stockées, éventuellement enrobées, intégrées dans un produit puis relarguées dans l'environnement.
- d'autre part, il faut également prendre en compte ce avec quoi les nanomatériaux considérés - ou leurs résidus - vont entrer en contact : êtres vivants végétaux, animaux, micro-organismes, et autres substances chimiques.
Toute évaluation des risques associés aux nanomatériaux est donc très complexe. Pour autant des pistes d'amélioration sont proposées par la communauté scientifique22.
Les incertitudes donnent lieu à des divergences d'interprétation
Ces incertitudes et difficultés expliquent que les résultats soient peu généralisables et à considérer avec prudence.
Quand certains minimisent les risques en arguant du fait que les expériences ont été réalisées sur la base d'un "scénario du pire" (pour "worst case scenario" en anglais, impliquant par exemple des nanoparticules utilisées sous forme dispersée et à doses très fortes), d'autres soulignent a contrario que les conclusions amènent à tirer la sonnette d'alarme.
Les nanomatériaux peuvent accroître la dissémination d'autres polluants
On sait déjà que les nanomatériaux ou leurs résidus peuvent traverser la paroi des cellules des plantes et y apporter des molécules extérieures (c'est l'effet "cheval de Troie"), on redoute qu'ils favorisent le transport de polluants (métaux lourds ou pesticides par exemple)23.
Des risques accrus par les interactions des nanomatériaux entre eux ou avec d'autres polluants
Comment ne pas craindre également un "effet cocktail" avec certaines molécules ? Des nanomatériaux, combinés avec d'autres substances, ne pourraient-ils pas devenir (encore) plus dangereux ?24
Quelles conséquences de la dissémination des nanomatériaux bactéricides ?
Utilisé dans de nombreux produits de consommation pour ses propriétés antibactériennes, le nanoargent nuit à certaines bactéries jouant aujourd'hui un rôle essentiel dans les stations d'épuration : les conséquences sont encore mal évaluées, mais les inquiétudes grandissent sur les problèmes qui pourraient se poser à moyen terme pour garantir la qualité des eaux25.
Pire, les nanomatériaux utilisés pour dépolluer les sols ou les eaux26 pourraient entraîner eux-mêmes des pollutions importantes des écosystèmes au point que de nombreux acteurs insistent sur la nécessité d'interdire l'utilisation de nanoparticules pour dépolluer des sols ou de l'eau jusqu'à ce que des recherches démontrent que les bénéfices sont supérieurs aux risques27.
Les nombreuses incertitudes scientifiques qui demeurent laissent le champ libre à des différences d'appréciation des risques par les scientifiques voire de vraies controverses. Outre les problèmes qu'il pourrait poser dans les stations d'épuration, le nanoargent par exemple est pointé du doigt par certains experts qui le soupçonnent d'accroître le risque d'émergence de bactéries multirésistantes aux antibiotiques, ce que d'autres contestent28...
Comment appliquer le principe de précaution ?
Devant le peu de certitudes et de garanties sur l'innocuité des nanomatériaux pour l'environnement, s'impose le principe de précaution, inscrit dans la Constitution depuis 2005 : "Lorsque la réalisation d'un dommage, bien qu'incertaine en l'état des connaissances scientifiques, pourrait affecter de manière grave et irréversible l'environnement, les autorités publiques veilleront, par application du principe de précaution, et dans leurs domaines d'attribution, à la mise en oeuvre de procédures d'évaluation des risques et à l'adoption de mesures provisoires et proportionnées afin de parer à la réalisation du dommage".
Comment l'appliquer au cas des nanomatériaux pour lesquels demeurent de nombreux "verrous scientifiques" qui empêchent à ce jour une connaissance précise des risques encourus ?
Voici quelques-unes des pistes de solutions - parfois complémentaires, parfois exclusives les unes des autres - proposées par différents acteurs lors du débat public national de 2009-2010 et depuis :
Mener des études supplémentaires ? Lesquelles et à quel prix ? Financées par le contribuable et/ou les industriels ?
De nombreux acteurs ont appelé à la réalisation d'études supplémentaires afin de combler les incertitudes restantes sur les risques / la sécurisation des nanomatériaux. Pour autant, est-ce réalisable dans des délais raisonnables sachant que de nouveaux nanomatériaux toujours plus complexes sont produits et commercialisés chaque jour ? Se pose en outre la question de la prise en charge par les industriels eux-mêmes du coût de ces recherches.
Limiter la commercialisation / les utilisations des nanomatériaux ?
Afin de prévenir les effets indésirés des nanomatériaux, certains acteurs ont demandé la mise en place de moratoires (avec des périmètres plus ou moins larges). Se basant sur les nombreux précédents qui témoignent des difficultés à intervenir "après-coup" (plomb, mercure, amiante, DDT, PCB, etc.), ils considèrent qu'une fois que de grandes quantités de nanomatériaux seront relarguées dans l'environnement et mélangées aux quelques centaines de milliers de substances chimiques de synthèse qui y sont déjà présentes, il sera sans doute trop tard pour agir.
Des chercheurs ont estimé qu'entre 63 et 91% des quelques 300 000 tonnes de nanomatériaux manufacturés produits dans le monde en 2010 ont fini dans des décharges, le reste étant relargué dans les sols (8 à 28%), l'eau (de 0,4 à 7%), ou l'atmosphère (0,1-1,5 %)29.
Certains demandent de rendre obligatoires les évaluations avant la commercialisation de nanomatériaux, et d'interdire ces derniers lorsque les résultats de ces évaluations suggèrent qu'ils pourraient être nocifs pour l'environnement. On retombe alors sur les questions mentionnées plus haut concernant la fiabilité, le calendrier et le financement de ces études.
Développer l'éco-conception des nanomatériaux ?
Des scientifiques aident à la mise en place d'une éco-conception des nanomatériaux : le but est de minimiser la toxicité et l'exposition aux différentes étapes du cycle de vie des nanomatériaux en contrôlant les méthodes de synthèse, de stockage et/ou d'intégration des nanomatériaux dans les produits finaux. Le défi peut-il être relevé - tant techniquement que financièrement ? A quelle échéance les projets en cours de déploiement porteront-ils leurs fruits ? Et avec quelle possibilité de contrôle quant à la réelle innocuité des nanomatériaux développés ? Avec quelle portée et quelles limites ? Cet aspect est développé dans notre fiche sur l'approche nano "safe by design".
Contrôler les sources industrielles d'émissions de nanomatériaux ?
Géolocaliser les relargages de nanomatériaux afin de cibler les zones les plus à risques
Il est également urgent d'enregistrer les flux de produits contenant des nanomatériaux, de cartographier les lieux de distribution et de potentiel relargage puis de procéder à des observations ciblées de longue durée et sur le terrain, par exemple par bassins versants avec la participation de gestionnaires de l'eau. Une telle démarche pourrait permettre de corréler les volumes de nanomatériaux relargués aux éventuels problèmes qui pourraient être observés à court, moyen et long termes. La modélisation mathématique peut être un outil d'anticipation des risques collectifs.
Des initiatives concrètes ont-elles été mises en place en ce sens ? Pas à notre connaissance.
La question environnementale, porte d'entrée d'une approche plus globale ?
Le physicien Richard Jones, Pro-Vice Chancelier à la Recherche et l'Innovation de l'Université de Sheffield (Royaume-Uni), interpellait en 2009 la communauté scientifique en insistant sur le fait que les enjeux environnementaux soulevés par les nanos dépassent le simple domaine de la toxicologie et de la technique, et nous confrontent à des questions plus globales : qui contrôle ces technologies, qui en profite ? selon quelle gouvernance ? 32. Du fait des incertitudes relatives à l'efficacité et à la potentielle gravité des effets environnementaux causés tout au long du cycle de vie des nanomatériaux, il s'agit de considérer les questions de leur réversibilité et de notre capacité à remédier aux problèmes qu'ils pourraient engendrer. En matière de réversibilité, ce ne sont pas uniquement des considérations techniques qui doivent entrer en ligne de compte souligne toujours Richard Jones : notre expérience avec d'autres technologies montre que les sociétés, une fois engagées dans une voie spécifique, peuvent avoir de grandes difficultés à faire marche arrière, non seulement pour des raisons techniques, mais aussi pour des raisons économiques ou socio-politiques.
La question de l'utilité (ou de la futilité) de l'usage des différents nanomatériaux a été posée lors du débat public national : y a-t-il un réel progrès pour l'homme ? La réponse peut varier en fonction des valeurs et des cultures. En France, beaucoup d'associations considèrent que "l'urgence publique est d'investir d'abord dans la réduction des pollutions, la prévention des cancers, la sobriété énergétique, l'accès à l'eau et à la nourriture avant de développer, sans véritable instance de contrôle ou d'éthique, les nanoproduits", ainsi que le rapportait le Président de la CNDP à l'issue du débat public national sur les nanotechnologies en avril 20107.
Se pose également la question de l'autonomie ou de la dépendance à une technologie complexe : quelles solutions alternatives existent pour l'effet attendu ? Quels moyens sont consacrés à les améliorer ?
En définitive, c'est le fonctionnement de notre démocratie qui est ici en jeu : qui décide quoi à quel moment du cycle de vie des innovations ? Quels acteurs sont concernés à chaque étape du cycle ? Ont-ils pu exprimer un avis et en est-t-il tenu compte au moment où un vrai choix est encore possible, comme le requiert la convention d'Aarhus ? Avec quelle éthique ?
Annexe : Les acteurs mobilisés sur la question
Différentes organisations ont pris position sur les questions environnementales soulevées par les nanotechnologies et nanomatériaux, notamment :
les agences environnementales comme l'EPA aux Etats-Unis, la DEPA au Danemark, etc.
du côté des laboratoires de recherche :
les équipes de recherche françaises mobilisées sur la question sont pour la plupart listées sur le site du Groupement de recherche international iCEINT qui inclue également des équipes américaines du consortium CEINT
6 - Dans un scénario de fonctionnement à long terme, l'évaluation du cycle de vie de deux processus solaires de purification de l'eau a par exemple montré un impact sur l'environnement nettement plus élevé pour le processus photocatalytique à base de nano-TiO2 par rapport à l'approche conventionnelle, du fait d'une forte consommation des ressources dans la production du dioxyde de titane à l'échelle nanométrique (Untersuchungen des Einsatzes von Nanomaterialien im Umweltschutz, Martens, Sonja, et al. (Golder Associates Gmbh), 2010, solicited by: Umweltbundesamt, no. 34/2010, June 2010, Dessau-Roßlau: Umweltbundesamt).
18 - Voir le document plus détaillé et plus récent Compendium of Projects in the European NanoSafety Cluster, NanoSafety Cluster, juin 2015
Citons notamment le projet européen de recherche NanoSolutions (2013-2017), qui cherche à identifier les caractéristiques des nanomatériaux manufacturés qui déterminent leur potentiel de risque biologique. Il vise à développer un modèle de classification de sécurité pour ces nanomatériaux, basé sur une compréhension de leurs interactions avec des organismes vivants.
20 - Cf. Résultats du programme européen Nanogenotox : génotoxicité des nanomatériaux. Plus généralement, on commence à mieux comprendre l'effet des faibles doses et à s'apercevoir que ces effets peuvent être tout aussi délétères que des doses importantes ou avoir des effets antagonistes en fonction des doses. Les effets-doses viennent complexifier considérablement les recherches en toxicologie. Voir par exemple Le problème sanitaire des faibles doses, Elizabeth Grossman, juillet 2012 ; La seconde mort de l'alchimiste Paracelse, Stéphane Foucart, 11 avril 2013
Le projet MESONNET du CEREGE, initié en 2012, a contribué ainsi à étudier les conséquences potentielles des nanoparticules sur les écosystèmes en utilisant des "mésocosmes".
Quel relargage des nanomatériaux manufacturés dans l'environnement ?
Quel relargage des nanomatériaux manufacturés dans l'environnement ?
Par l'équipe Avicenn - Dernier ajout octobre 2019
Cette fiche fait partie de notre dossier Nano et Environnement ; elle a vocation à être complétée et mise à jour avec l'aide des adhérents et veilleurs d'Avicenn. Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr. Sommaire
Peu de données existent sur le relargage des nanomatériaux manufacturés
Par "relargage" des nanomatériaux, on désigne le phénomène par lequel des nanomatériaux - ou des résidus de dégradation des nanomatériaux - sont émis dans l'environnement. Le terme "émissivité" est parfois également utilisé.
On peut distinguer le relargage :
des nanoparticules naturelles que l'on trouve par exemple dans les poussières d'érosion ou d'éruption volcanique ou encore dans les embruns marins ;
des nanoparticules dites "incidentelles" car produites "involontairement" par les activités humaines, émanant des fumées (de combustion du bois, industrielles, émanant des moteurs diesel, des incinérateurs, des grille-pains ou des fours) ou de l'abrasion de matériaux bruts non nanométriques ;
des nanomatériaux manufacturés produits à dessein à l'échelle nanométrique par les chercheurs et les industriels pour exploiter leurs propriétés spécifiques.
On a aujourd'hui une connaissance très limitée des quantités et types de nanomatériaux manufacturés - ou résidus de ces nanomatériaux - qui sont relargués dans l'environnement ; les instruments et méthodes pour détecter et mesurer les nanomatériaux sont en cours de mise au point. Or ces données sont importantes pour mieux connaître l'exposition aux nanomatériaux des écosystèmes et des populations (notamment des travailleurs), afin de mieux les protéger des risques associés.
En 2013, des chercheurs ont estimé qu'entre 63 et 91% des quelques 300 000 tonnes de nanomatériaux manufacturés produits dans le monde en 2010 ont fini dans des décharges, le reste étant relargué :
Mais ces chiffres sont très en deçà de la réalité : en France seulement, c'est environ 500 000 tonnes qui sont en effet importées et produites chaque année ! C'est ce qu'a permis de mettre en évidence la déclaration obligatoire dans le registre r-nano depuis 2013.
A noter, cette mise au point par Olivier Boucher, directeur de recherche au laboratoire CNRS de météorologie dynamique, concernant les allégations véhiculées sur les réseaux sociaux au sujet des nanoparticules qui seraient relarguées par les avions ("chemtrails") : "Les avions diffusent-ils des produits chimiques à notre insu ?", France Culture, 28 juillet 2018.
En septembre 2019, on apprenait toutefois par Emirats Agence de Presse, que le Centre national de météorologie (CNM) des Emirats arabes unis avait lancé une campagne de tests d'ensemencement de nuages avec des nanoparticules de dioxyde de titane appliquées sur les cristaux de sel. L'objectif est de mieux contrôler la pluviosité. Quid du transport et des effets de ces nanoparticules ensuite dans les eaux et les sols ? Le communiqué ne le dit pas...
Un phénomène complexe, tout au long du "cycle de vie"
Le relargage des nanomatériaux manufacturés peut intervenir tout au long du "cycle de vie" des produits, sans que l'on sache aujourd'hui sous quelle forme, en quelles quantités, et avec quels effets il s'opère précisément.
A chacune des étapes de ce cycle de vie, de nombreux paramètres entrent en ligne de compte. Le relargage sera en effet différent selon :
- la façon dont les nanomatériaux se présentent : sous forme de poudre, en solution, déposés sur une surface ou intégrés dans une matrice, etc.
- les conditions de production / d'utilisation / de gestion des déchets
- le "medium" qui les environne : air, eau, sol
- etc.
Quels relargages lors de la production / de la transformation / du transport des nanomatériaux ?
dans les mines où est effectuée l'extraction des matériaux à partir desquels certains nanomatériaux sont fabriqués (par exemple le titane pour les nanoparticules de dioxyde de titane) ?
sur les lieux de travail où ils sont synthétisés / manipulés / transformés ?
dans les effluents industriels ?
sur les voies de transport (maritimes, routières ou ferroviaires) des matériaux en cas d'accident ?
En France, les entreprises et laboratoires ont certes obligation, depuis 2013, de déclarer les quantités et les usages de nanomatériaux qu'ils produisent, distribuent ou importent. Les informations collectées dans le cadre de cette déclaration permettront-elles de mieux estimer et localiser les volumes de nanomatériaux relargués dans l'environnement ? Pas autant qu'on aurait pu l'espérer, selon certains acteurs qui regrettent la faiblesse des amendes fixées en cas de non-respect de l'obligation légale et les considérations de confidentialité et de secret commercial ou industriel prévues par le texte et qui en limitent la portée. Sans compter que la loi ne prévoit aujourd'hui aucune disposition spécifique sur le confinement et la sécurisation des lieux où des nanomatériaux manufacturés sont présents ni sur le traitement des effluents industriels contenant potentiellement des nanomatériaux.
Quels relargages lors de l'utilisation des produits auxquels ils ont été associés ?
Le relargage de nanomatériaux ou de résidus de nanomatériaux peut intervenir lors de l'utilisation directe des produits qui en contiennent ou sous l'effet de l'usure, l'abrasion ou de leur dégradation, par exemple :
dans l'air :
lors de la vaporisation de sprays de crèmes solaires ou de peintures
lors de l'altération par collision, perçage ou abrasion de pare-chocs, murs ou revêtements de surface2
dans l'eau :
lors de la baignade pour des personnes ayant appliqué de la crème solaire3,
sous l'effet du ruissellement des eaux de pluie sur les ciments et peintures extérieures recouverts de nanorevêtements5
dans les sols :
en agriculture, lors de l'épandage de pesticides ou d'engrais6 contenant des nanomatériaux,
lors de dépollution des sols in-situ par injection de nanomatériaux.
Selon les connaissances actuelles sur le relargage, on présume que le relargage sera plus important, par ordre décroissant, pour les sprays, les pneus, les crèmes solaires, les textiles, les peintures d'extérieur et les ciments (dont la part pourrait néanmoins considérablement augmenter dans un futur proche7), et dans une moindre mesure pour les revêtements plastiques ou métalliques d'appareils électroménagers, ou pour les vitres auxquels les nanomatériaux sont plus solidement "fixés".
Le chlore des piscines peut dégrader le revêtement d'hydroxyde d'aluminium qui entoure les nanoparticules de dioxyde de titane (TiO2) intégrées dans certaines crèmes solaires. Au contact de l'eau et sous l'effet de la lumière, le coeur du nanomatériau, le nanoTiO2 peut alors libérer des radicaux libres, responsables du vieillissement de la peau et de l'apparition de cancers8.
Depuis fin 2013, plusieurs recherches ont montré que des nanotubes de carbone bien que contenus dans une matrice peuvent être relargués dans l'environnement sous l'effet du soleil et d'une humidité modérée ou de l'abrasion9.
Quels relargages en "fin de vie" des produits ?
lors de la combustion (incendie ou incinération) : De premiers résultats ont montré que des nanoparticules d'oxydes de cérium peuvent se retrouver intactes à la surface des résidus de la combustion et donc être transférées telles quelles dans les sites d'enfouissement ou les matières premières récupérées10. Des travaux plus récents ont montré que la nanostructure de certains déchets peut être transférée dans les émissions brutes en sortie de four qui sont générées par le processus de combustion (les systèmes d'épuration de type filtre à manche semblent néanmoins faire preuve d'une bonne efficacité pour traiter ces émissions contenant des nanos)11 ; d'autres études montrent cependant que les comportements des nanodéchets lors de l’incinération sont différents selon leur composition et qu'il peut y avoir persistance de certaines nanoparticules en sortie de four d’incinération, à travers les effluents et les cendres. Les valeurs limites d’émission de particules pour les incinérateurs de déchets sont aujourd’hui exprimées en concentration totale massique, en microgramme par mètre cube d’air, ce qui n’est pas pertinent pour des nanoparticules qui ont une masse négligeable et pourtant une toxicité soupçonnée comme accrue ; les normes devraient imposer une concentration limite en nombre de particules, ou alors en masse mais pour des tailles de particules données12.
lors de la mise en décharge : il est fort probable qu'il y ait infiltration de nanomatériaux solides dans les liquides qui s'échappent des déchets des décharges (les lixiviats)13
Ces questions demandent à être creusées, car les travaux publiés sur le relargage des nanomatériaux dans l'environnement sont encore parcellaires. En outre beaucoup d'études ont été réalisées dans des conditions souvent très éloignées de celles rencontrées dans la réalité et sur des nanomatériaux différents de ceux qui sont réellement incorporés dans les produits actuellement sur le marché. Des recherches sont en cours pour en savoir plus.
Les travaux de recherche sur le relargage des nanomatériaux
Rares sont les travaux qui portent spécifiquement et quasi-exclusivement sur le relargage des nanomatériaux dans l'environnement. En 2012, nous avions commencé à repérer les projets existants (contribuez à compléter cette liste, en nous signalant les projets à l'adresse redaction(at)veillenanos.fr) :
Le projet NANOTOX'IN: Évaluation des risques induits par l'incinération de nanocomposites à matrices polymères émergents : lors de processus d’incinération, ces nouveaux produits plastiques à base de nanoparticules relarguent-ils des nanoparticules ? Avec quels risques pour la santé publique ? Un projet financé par l'ADEME, réalisé par l'Armines (école des Mines de Saint-Etienne et école des mines d'Alès) et le Laboratoire national de métrologie et d'essais (LNE) en 2016 et 2017
objet : déterminer l'impact environnemental des résidus de dégradation des nanomatériaux commercialisés : devenir, biotransformation et toxicité vis-à-vis d'organismes cibles dun milieu aquatique
Il y a plusieurs années, le CEA a commencé des travaux sur la dispersion dans l'air des nanoparticules relarguées durant l'abrasion des nanomatériaux : nanotextiles en PET et PVC, ou peintures et polymères dans le cadre du projet européen NanoHouse mentionné plus bas.
Les travaux réalisés dans le cadre du Labex Serenade devraient également permettre d'apporter des éléments puisque le but est de parvenir à une éco-conception des nano-produits, qui ne relarguent donc pas de nanomatériaux toxiques dans l'environnement.
objet : analyse du cycle de vie des nanomatériaux pour la construction, en particulier sur lexposition chronique pour les nanoparticules d'argent et de dioxyde de titane contenues dans les peintures et revêtements utilisés en intérieur et à l'extérieur des habitations
financement : 2,4 millions d'€ en provenance de la Commission européenne, sur un budget global de 3,1 millions d'€
NEPHH (Nanomaterials-related Environmental Pollution and Health Hazards throughout their life-cycle)
objet : l'évaluation des risques sanitaires majeurs associés aux nanotechnologies et résultant de la production, de l'utilisation et de la dégradation des nanocomposites polymères à base de silicium.
financement : 2,4 millions d'€ en provenance de la Commission européenne
le consortium américain "Center for Environmental Implications of Nanotechnology" (CEINT) dirigé par Marc Wiesner étudie notamment les fuites des nanomatériaux, l'efficacité des traitements des effluents, l'altération des produits, le stockage en fin de vie.
Au sein de l'OCDE, le Groupe de travail sur la productivité des ressources et les déchets (GTPRD) s'est penché sur le devenir et les impacts des nanomatériaux contenus dans les produits et libérés lors du traitement de ces produits en fin de vie. Trois rapports sur l'incinération, le recylage et la mise en décharge des déchets contenant des nanomatériaux ont été soumis aux délégués des pays membres de l'OCDE fin 2013, avant d'être publiés en novembre 2015 :
2 - Une étude de l'INERIS et de l'université de Compiègne publiée début 2015 a montré qu'un nanorevêtement de dioxyde de titane existant dans le commerce, une fois appliqué sur une façade de bâtiment, peut se détériorer sous l'effet du soleil et de la pluie ; ce faisant, il entraîne le relargage de particules de titane dans l'air en quelques mois - et qui plus est, sous forme de particules libres (plus dangereuses que lorsqu'elles sont agglomérées entre elles ou avec des résidus d'autres matériaux). Cf. Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather, Shandilya, N et al., Environmental Science & Technology, 49(4): 2163-2170, 2015 ; un résumé vulgarisé est accessible gratuitement ici : Nanocoating on buildings releases potentially toxic particles to the air, "Science for Environment Policy", Commission européenne, 28 mai 2015
3 - Des chercheurs espagnols ont ainsi estimé que l'activité touristique sur une plage de Méditerranée durant une journée d'été peut relarguer de l'ordre de 4 kg de nanoparticules de dioxyde de titane dans l'eau, et aboutir à une augmentation de 270 nM/jour de la concentration en peroxyde d'hydrogène (une molécule au potentiel toxique, notamment pour le phytoplancton qui constitue la nourriture de base des animaux marins). Cf. Écrans UV nanos : un danger pour la vie marine, L'Observatoire des Cosmétiques, 5 septembre 2014
NANOTOX'IN : Évaluation des risques induits par l'incinération de nanocomposites à matrices polymères émergents : lors de processus d’incinération, ces nouveaux produits plastiques à base de nanoparticules relarguent-ils des nanoparticules ? Avec quels risques pour la santé publique ? Un projet financé par l'ADEME, réalisé par l'Armines (école des Mines de Saint-Etienne et école des mines d'Alès) et le Laboratoire national de métrologie et d'essais (LNE) en 2016 et 2017
Ce site est édité par l'association Avicenn qui promeut davantage de transparence & de vigilance sur les nanos.
Pour soutenir nos travaux, suivez et partagez nos infos :