home Contact Espace collectif
rss
bandeau
Lien vers: PagePrincipale
Rubriques thématiques :

Retrouvez-nous sur les réseaux sociaux :
twitter-veillenanos
Lien vers: https://twitter.com/#!/VeilleNanos fb-avicennl
Lien vers: https://www.facebook.com/VeilleNanos

Newsletter VeilleNanos

Tous les n° de la lettre VeilleNanos
LettreVN016--very-nano
Abonnez-vous gratuitement ici

Alertes thématiques

Notre compilation d'actus :gadget_wikinanos_small
Lien vers: http://wikinanos.fr



Toutes nos publications

- en librairie
EditionsYMichel_logo_small4

Relargage et devenir des nanomatériaux dans l'eau

Par MD - Dernier ajout novembre 2016

Cette fiche fait partie de notre dossier Nano et Eau : elle a vocation à être complétée et mise à jour avec l'aide des adhérents et veilleurs de l'Avicenn. Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr.

Sommaire :

Relargage de nanomatériaux dans l'eau

- Quelles quantités de nanomatériaux sont relarguées dans l'eau ?
La quantité de nanoparticules relarguées dans l'eau est aujourd'hui inconnue. L'un des défis majeurs tient au fait qu'on ne sait pas bien détecter les nanoparticules dans l'eau à faible concentration1.
Différentes modélisations2 ont été réalisées pour tenter de quantifier les concentrations et les flux de différents types de nanoparticules manufacturées dans l'environnement. Cependant, ces exercices sont basés principalement sur les estimations de quantités produites de nanomatériaux manufacturés plutôt que sur des estimations de quantités de nanomatériaux manufacturés contenus dans les produits de consommation3.

En 2013, des chercheurs ont estimé qu'entre 0,4 à 7% des 300 000 tonnes de nanomatériaux manufacturés produits dans le monde en 2010 ont été relargués dans l'eau4. Mais ces chiffres sont bien en deça de la réalité puisqu'on a appris la même année grâce à la déclaration obligatoire française que pas moins de 500 000 tonnes de "substances à l’état nanoparticulaire" avaient été produites ou importées sur le seul territoire français en 20135 !

- Quelles sont les sources de relargage de nanomatériaux dans l'eau ?
Des nanomatériaux peuvent être libérés dans l'eau :
  • dans les effluents industriels émanant d'entreprises dans lesquelles des nanomatériaux sont produits / manipulés / transformés
  • lors de la baignade des personnes ayant appliqué de la crème solaire contenant des nanoparticules6
  • lors des lavages pour les textiles auxquels des nanoparticules ont été appliquées7
  • sous l'effet du ruissellement des eaux de pluie pour les ciments et peintures extérieures recouverts de nanorevêtements8 et suite au lessivage de sols contaminés
  • sous l'effet de la corosion des peintures appliquées sur les bateaux (certaines contiennent des nanoparticules d'oxyde de cuivre pour empêcher les petits crustacés et les moules de se fixer sur la coque9)
  • par le dépôt de particules transportées par voie atmosphérique
  • suite à un déversement accidentel

- Quels sont les nanomatériaux les plus susceptibles d'être présents dans l'eau ?
Du fait des incertitudes sur les volumes de nanomatériaux commercialisés et relargués dans l'eau, les estimations des scientifiques ne sont pas concordantes et varient en fonction des méthodes et hypothèses utilisées et des pratiques des différents pays (épandage des boues des stations d'épuration versus incinération par exemple) :

  • selon une étude récente, les nanoparticules dont les concentrations sont susceptibles d'être les plus élevées dans l'eau traitée au Royaume-Uni sont les nanoparticules de dioxyde de titane et les nanoparticules de zinc (émanant des crèmes solaires et autres cosmétiques) et les nanoparticules de silice (dentifrice) ; les nanoparticules à base de carbone, de fer ou d'argent n'arrivent qu'en 6ème, 7ème et 8ème positions, et les nanoparticules d'oxyde de cerium sont celles dont les concentrations sont les plus faibles10.

  • selon une autre estimation portant sur le Danemark cette fois, les plus fortes concentrations de nanoparticules dans les systèmes aquatiques concerneraient les particules de noir de carbone et de TiO2 photostable (contenu dans les crèmes solaires et non pas celui contenu dans les peintures photocatalytiques), suivies par le carbonate de cuivre (CuCO3, en supposant que son utilisation comme agent de protection du bois va s'accroître). Les traitements des eaux conduiraient à des concentrations extrêmement faibles de nanoparticules d'oxydes de zinc (ZnO) et de nanoparticules d'argent dans l'environnement11.

En France, des chercheurs ont constaté un accroissement de la présence d'argent dans l'estuaire de la Gironde12 dont les causes depuis 2005 sont encore mal connues, mais potentiellement liées... :
  • à l'érosion des sols agricoles,
  • à l'ensemencement des nuages (solution d'iodure d'argent) pour éviter les impacts de la grêle sur les récoltes de vigne et l'arboriculture,
  • aux rejets des eaux usées des collectivités.

Devenir des nanomatériaux dans l'environnement aquatique

Les connaissances sur le devenir des nanomatériaux dans l'eau commencent à se développer mais restent encore très limitées. En raison de leur petite taille et surtout de leur forte réactivité, les nanomatériaux ont en effet tendance à interagir avec quasiment tous les éléments présents dans l'eau (matériaux minéraux, chimiques ou biologiques), selon des configurations très variables en fonction de leurs caractéristiques physico-chimiques et de la composition du milieu.
Dans l'eau, les nanomatériaux peuvent subir des modifications :
DissolutionAdsorptionAgglomeration
  • des phénomènes de dissolution peuvent intervenir (plus particulièrement sur les nanoparticules d'argent et d'oxyde de zinc) et être d'autant plus importants que les particules sont petites13

  • des phénomènes d'adsorption peuvent entraîner la fixation d'autres éléments (dont des polluants) à la surface des nanoparticules14

  • des phénomènes d'agglomération des nanomatériaux ont été constatés dans les eaux naturelles15.

> Phénomènes pouvant altérer les nanomatériaux dans l'environnement - Camille Larue, 201116

Certains nanomatériaux ont tendance à sédimenter par gravité et s'accumuler dans les sédiments (notamment dans le cas de nanomatériaux agrégés et/ou hydrophobes comme les nanotubes de carbone17) ce qui augmente les risques de contact avec des microorganismes qui vivent sur les sédiments aquatiques.
D'autres auraient au contraire tendance à rester en suspension (notamment s'ils sont enrobés avec un revêtement de surface hydrophile) et se disperser facilement, augmentant le risque d'exposition18.

Leur dégradation, ou à l'inverse leur persistance, sont elles aussi complexes à déterminer et varient en fonction des nanomatériaux et de la qualité des eaux :
  • Selon une étude de 2011, les nanomatériaux carbonés (fullerènes C60, nanotubes de carbone) ne sont pas biodégradables en milieu liquide dans l'environnement18.
  • Une autre étude dont les résultats ont été rendus publics en 2011 également19 a été menée sur des nanoparticules d'oxydes de zinc (ZnO) et de dioxyde de titane (TiO2) dans l'eau de Seine ; elle a montré que :
    • la forme nanoparticulaire du TiO2 n'est pas davantage soluble que ses homologues microparticulaire ou macroparticulaire
    • à l'inverse, pour une bonne part, les nanoparticules d'oxydes de zinc sont rapidement dissoutes dans l'eau de Seine
    • l'enrobage, en fonction de sa nature, peut diminuer ou augmenter la dissolution des nanoparticules.
Les nanomatériaux en général auraient tendance à être stabilisés dans les médias de faible force ionique et de forte teneur en carbone organique dissous (COD)20.

On retrouve déjà des nanomatériaux dans les stations d'épuration urbaines et de traitement des eaux industrielles, mais les traitements en place n'ont pas été conçus pour les filtrer : une part non négligeable d'entre eux se retrouve donc dans les eaux superficielles, quant aux autres, ils s'accumulent dans les boues des stations d‘épuration épandues sur les terres agricoles !

Transfert à travers les milieux poreux

Les processus de transfert à travers un milieu poreux (sol ou aquifère) sont également l’objet de travaux de recherche. Des expériences sont réalisées en présence d’une phase solide ou à travers une phase solide. Elles permettent une meilleure compréhension des processus d’adsorption, de l’impact de l’hydrodynamique et de l’agrégation sur les processus de transport des nanoparticules. Les premières expériences réalisées sont toutefois réalisées sur des modèles très simplifiés tels que des billes de silice. Les essais en milieu plus complexe comprenant plusieurs minéraux et intégrant la matière organique naturelle commencent seulement à se développer21.

En savoir plus

Voir les autres fiches de notre dossier Nano et Eau.

LIRE AUSSI sur notre site :

- Ailleurs sur le web :


NOTES et REFERENCES

1 - Voir notre Biblio "Détection / caractérisation de nanomatériaux dans l'eau"

2 - Voir notamment :

3 - Cf. How important is drinking water exposure for the risks of engineered nanoparticles to consumers?, Tiede K et al., Nanotoxicology, 1–9, 2015

4 - Cf. Global life cycle releases of engineered nanomaterials, Keller AA et al., Journal of Nanoparticle Research, 15:1692, Mai 2013

5 - Cf. 500 000 tonnes de nanomatériaux en France... enfin pas tout à fait !, veillenanos.fr, 2 décembre 2013

6 - Des chercheurs espagnols ont ainsi estimé que l'activité touristique sur une plage de Méditerranée durant une journée d'été peut relarguer de l'ordre de 4 kg de nanoparticules de dioxyde de titane dans l'eau, et aboutir à une augmentation de 270 nM/jour de la concentration en peroxyde d'hydrogène (une molécule au potentiel toxique, notamment pour le phytoplancton qui constitue la nourriture de base des animaux marins). Cf. Écrans UV nanos : un danger pour la vie marine, L'Observatoire des Cosmétiques, 5 septembre 2014

7 - Cf. notamment :

8 - Des nanoparticules de dioxyde de titane ont été détectées dans l’eau ruisselant de murs peints à l’aide de peintures contenant cette substance : Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment, Kaegi R. et al, Environmental Pollution, 156(2), 2008

9 - Nanomaterials in sunscreens and boats leave marine life vulnerable, UC Davis News, 12 mai 2015 (communiqué de presse)

10 - Cf. How important is drinking water exposure for the risks of engineered nanoparticles to consumers?, Tiede K et al., Nanotoxicology, 1–9, 2015

11 - Modeling Flows and Concentrations of Nine Engineered Nanomaterials in the Danish Environment, Gottschalk F et al., Int. J. Environ. Res. Public Health, 12(5), 5581-5602, 2015

12 - L’argent (Ag, nanoAg) comme contaminant émergent dans l’estuaire de la Gironde : évaluations scientifiques et gouvernance des risques, Salles D. et al., ERS, 12 : 317-323, juillet/août 2013

13 - Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid, Bian SW et al, Langmuir, 27 (10), pp 6059–6068, 2011

14 - Cf. les références listées en note de bas de page de la fiche Quels effets des nanomatériaux sur la faune et la flore aquatiques ?

15 - Cf. notamment :

16 - "Devenir des nanomatériaux dans l'écosystème eau" in Impact de nanoparticules de TiO2 et de nanotubes de carbone sur les végétaux, thèse, Camille Larue, 2011

17 - Une équipe de recherche aux USA a montré l'accumulation de nanotubes de carbone à simple paroi dans les sédiments de zones humides : Fate of single walled carbon nanotubes in wetland ecosystems, Schierz A et al., Environ. Sci.: Nano, 2014 (voir aussi le communiqué de presse associé : Nanoparticles accumulate quickly in wetlands, Science Daily, 1er octobre 2014)

18 - Voir notamment les références citées dans le rapport Toxicité et écotoxicité des nanotubes de carbone, ANSES, février 2011

18 - Biodegradability of organic nanoparticles in the aqueous environment, Kummerer K et al., Chemosphere, 82(10):1387-92, 2011

19 - Cf. Les nanoparticules : quels risques en Seine ?, Yann Sivry et al., communication aux 22èmes Journées Scientifiques de l'Environnement - Reconquête des environnement urbains : les défis du 21ème siècle, février 2011

20 - Cf. A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment, Peijnenburg W et al., Critical Reviews in Environmental Science and Technology, 45(19) : 2084-2134, 2015

21 - Note de cadrage – Atelier « Pollutions » – « Réduire les pollutions et les impacts sur la biodiversité » – avril 2010 (pour la Conférence française pour la biodiversité de mai 2010)

Fiche initialement mise en ligne en février 2015
Il n'y a pas de commentaire sur cette page. [Afficher commentaires/formulaire]