Vous avez dit nanos ?
(intro, définitions, mesures, etc.)
Produits et domaines d'application (alimentation, cosmétiques, textiles, BTP, médicaments, ...)
Réglementations (étiquetage, déclaration par les entreprises, registres nationaux, etc.)
Risques (toxicité, recherches, incertitudes, etc.) et préoccupations nano :
Notre ligne éditoriale
Espace réservé
(intro, définitions, mesures, etc.)
Produits et domaines d'application (alimentation, cosmétiques, textiles, BTP, médicaments, ...)
Réglementations (étiquetage, déclaration par les entreprises, registres nationaux, etc.)
Risques (toxicité, recherches, incertitudes, etc.) et préoccupations nano :
Notre ligne éditoriale
Espace réservé
Quels effets des nanomatériaux sur la faune et la flore aquatiques ?
Quels effets des nanomatériaux sur la faune et la flore aquatiques ?
Par l'équipe Avicenn - Dernière modification mai 2020Cette fiche fait partie de notre dossier Nano et Eau : elle a vocation à être progressivement complétée et mise à jour avec l'aide des adhérents et veilleurs de l'Avicenn. Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr.
La contamination des eaux par les nanoparticules manufacturées ou leurs résidus entraîne également la contamination des organismes aquatiques comme les algues, les crustacés et les poissons.
Les études sur les effets des nanomatériaux sur la faune et, dans une moindre mesure, sur la flore aquatiques se développent mais beaucoup d'incertitudes demeurent (la salinité ou l'acidité de l'eau peuvent modifier leur toxicité par exemple1) et les préoccupations sont fortes.
On sait déjà que des nanomatériaux ou résidus de nanomatériaux peuvent pénétrer et s'accumuler dans différentes espèces aquatiques, être transférés de génération en génération et remonter la chaîne alimentaire.
Des chercheurs ont mis en évidence le transfert de nanomatériaux de l'eau de mer vers l'appareil digestif des moules2, des algues au zooplancton puis aux poissons qui s'en nourrissent3.
On parle de "bioamplification" : il y a augmentation de la teneur en toxique d'un maillon de la chaîne alimentaire à l'autre :

Source : Cedervall et. al, 2012, voir la note 3
Quelques exemples d'effets déjà constatés en 20114 :
- effets sur les algues : augmentation de la mortalité, retards de croissance, diminution de la photosynthèse et génération d'espèces réactives de l'oxygène
- effets sur les crustacés : augmentation de la mortalité, modification du comportement, malformations chez la daphnie, accumulation dans l'organisme
- effets sur les poissons : mortalité et perturbation du développement avec apparition de malformations ; le nanoargent notamment peut entraîner des malformations très marquées sur l'embryon de poisson-zèbre5
- effets sur d'autres organismes aquatiques :
- dégâts dans tout l'organisme de la moule, notamment induction de processus inflammatoires, augmentation de l'expression de gènes impliqués dans la régulation de stress, augmentation de l'activité des enzymes antioxydantes et de la peroxydation lipidique
- effets toxiques sur les escargots d'eau douce, les larves de chironomes, les cnidaires et les polychètes : diminution de la nutrition, augmentation du nombre de malformations, stress oxydant, dommages à l'ADN corrélés à une augmentation de la mortalité
- effets toxiques sur les amphibiens
A forte concentration, des effets de nanotubes de carbone ont été constatés sur des organismes aquatiques : diminution du taux de fertilisation chez des petits crustacés, malformations, retards à l'éclosion voire augmentation du taux de mortalité des embryons du poisson zèbre6.
Même altérées et agglomérées, des nanoparticules (de dioxyde de cérium notamment, utilisées comme agent protecteur anti-rayure anti-UV dans des peintures extérieures) peuvent conserver leur écotoxicité vis-à-vis des organismes aquatiques (des micro-algues dans l'expérience menée)7.
Outre les effets toxiques qu'ils peuvent induire directement, les nanomatériaux peuvent entraîner des dommages indirects mais néanmoins très préoccupants :
- Les nanomatériaux ou leurs résidus peuvent traverser la paroi des cellules des plantes ou des animaux et y apporter des molécules extérieures (c'est l'effet "cheval de Troie"), ils peuvent jouer un rôle de "vecteurs" et favoriser le transport de polluants (métaux lourds, HAP ou pesticides par exemple)8.
- Les nanomatériaux peuvent fragiliser les plantes ou les animaux :
- Des chercheurs aux USA viennent de mettre en évidence que des nanomatériaux de zinc et d'oxyde de cuivre, même à faibles concentrations, peuvent rendre des embryons d'oursins plus sensibles à d'autres contaminants9.
- D'autres chercheurs allemands et américains ont récemment mis en évidence le fait que des nanoparticules de dioxyde de titane peuvent perturber le système immunitaire de poissons (vairons) et leur résistance aux pathogènes bactériens10, fragilisant ainsi leur survie en cas de maladie.
- D'autres études sont menées avec des conclusions également préoccupantes 11
- Des nanomatériaux, combinés avec d'autres substances, pourraient devenir (encore) plus dangereux : on parle alors d'"effet cocktail" 12. "Les études s'accordent sur le fait que la présence des nanoparticules dans un milieu liquide mène à une accumulation plus importante de polluants dans les organismes. Les risques pour la chaîne alimentaire jusqu'à l'homme sont donc réels, à la fois à cause des nanoparticules en elles-mêmes ainsi qu'au travers de leur rôle de vecteur de contamination" 13.
En savoir plus
En français :
- Les nanoparticules d’argent sont toxiques pour les organismes aquatiques, France Diplomatie, 26 octobre 2018
- Interaction et accumulation des nanoparticules chez les organismes aquatiques, thèse, INERIS, 2018 (à 2021 ?)
- Nanomatériaux à travers un gradient de salinité : exposition et effets écotoxicologiques au cours de leur cycle de vie , Carole Bertrand, thèse, 2016, avec la participation de Laure Giamberini, en lien avec le projet NanoSALT soutenu par l'ANR pour comprendre le devenir de nanoparticules d’Ag et de CeO2 issus des textiles et peintures.
- Présence, persistance, devenir et effets des nanomatériaux dans l'environnement, 83e du Congrès de l'Acfas, Colloque 210 , mai 2015
- Quelles interactions entre les nanoparticules et les autres contaminants de l'environnement ?, Camille Larue, Bulletin de veille scientifique (BVS), Anses, décembre 2014
- Prise en compte de l'évolution de l'état d'agglomération dans l'étude de l'écotoxicité des nanoparticules, Nicolas Manier, Rapport scientifique 2013-2014, INERIS, novembre 2014, p.16
- Écrans UV nanos : un danger pour la vie marine, L'Observatoire des Cosmétiques, 5 septembre 2014 : Des chercheurs espagnols ont ainsi estimé que l'activité touristique sur une plage de Méditerranée durant une journée d'été peut relarguer de l'ordre de 4 kg de nanoparticules de dioxyde de titane dans l'eau, et aboutir à une augmentation de 270 nM/jour de la concentration en peroxyde d'hydrogène (une molécule au potentiel toxique, notamment pour le phytoplancton qui constitue la nourriture de base des animaux marins) → Résumé vulgarisé en français de l'article suivant : Sunscreens as a Source of Hydrogen Peroxide Production in Coastal Waters, Sánchez-Quiles D and Tovar-Sánchez A, Environ. Sci. Technol., 48 (16), 9037-9042, 2014
- Fausse route pour l'argent, Eawag, février 2014 → résumé vulgarisé en française de l'article Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver, PNAS, février 2014
- Impact des nanomatériaux sur les bactéries de l'eau, les algues, les crustacés, les poissons, d'autres organismes aquatiques, une chaîne trophique aquatique simplifiée in Impact de nanoparticules de TiO2 et de nanotubes de carbone sur les végétaux, thèse, Camille Larue, 2011
- Les nanoparticules dans l'écosystème eau, Larue C et Carrière M, Bulletin de veille scientifique, n°14, ANSES, juin 2011
En anglais :
- How Nanosilver Gets Into Our Freshwater, and What We Need To Do About It, Lauren Hayhusrt, Fisheries Research Biologist, IISD Experimental Lakes Area, 16 avril 2020
- Silver and titanium nanomaterials present in wastewater have toxic effects on crustaceans and fish cells, Norwegian Institute for Water Research (NIVA), novembre 2019
- A sub-individual multilevel approach for an integrative assessment of CuO nanoparticle effects on Corbicula fluminea, Koehle-Divo V et al., Environmental Pollution, 254, Part A, novembre 2019
- Changes in protein expression in mussels Mytilus galloprovincialis dietarily exposed to PVP/PEI coated silver nanoparticles at different seasons, Duroudier N et al., Aquatic Toxicology, 210 : 56-68, mai 2019
- The Toxicity of Nanoparticles to Organisms in Freshwater, Lekamge S et al., Reviews of Environmental Contamination and Toxicology, 10 novembre 2018
- Waterborne exposure of adult zebrafish to silver nanoparticles and to ionic silver results in differential silver accumulation and effects at cellular and molecular levels, Lacave JM et al., Science of The Total Environment, 642 : 1209-1220, novembre 2018
- Toxicity and trophic transfer of P25 TiO2 NPs from Dunaliella salina to Artemia salina: Effect of dietary and waterborne exposure, Bhuvaneshwari M et al., Environmental Research, 160 : 39-46, janvier 2018
- Emerging contaminants: fate, effects and environmental risks, Conférence, The society of Environmental Toxicology and Chemistry (SETAC), mai 2016
- The influence of salinity on the fate and behavior of silver standardized nanomaterial and toxicity effects in the estuarine bivalve Scrobicularia plana, Bertrand, C et al. , Environ Toxicol Chem., 2016
- Smaller silver nanoparticles more likely to be absorbed by aquatic life, UCLA study finds, UCLA News, 7 octobre 2015
- Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens, Jovanovic B et al., Environmental Pollution, 203 : 153-164, août 2015
- Adapting OECD Aquatic Toxicity Tests for Use with Manufactured Nanomaterials: Key Issues and Consensus Recommendations, Petersen EJ et al., Environ. Sci. Technol., 49 (16) : 9532-9547, 2015
- Nanomaterials in sunscreens and boats leave marine life vulnerable, UC Davis News, 12 mai 2015 (communiqué de presse) ; Copper oxide and zinc oxide nanomaterials act as inhibitors of multidrug resistance transport in sea urchin embryos: Their Role as Chemosensitizers, WU B et al., Environ. Sci. Technol., 49 (9) : 5760-5770, avril 2015
- Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions, Aquatic Toxicology, 161, avril 2015
- Evaluation of environmental stress by comet assay on freshwater snail Lymnea luteola L. exposed to titanium dioxide nanoparticles, Daoud A, Toxicological & Environmental Chemistry, 2015
- Effets écotoxicologiques de nanoparticules de dioxyde de cérium en milieu aquatique : d’une évaluation en conditions monospécifiques à l’étude de chaînes trophiques expérimentales en microcosme, Agathe Bour, thèse, Université de Toulouse, janvier 2015
- Sources, Distribution, Environmental Fate, and Ecological Effects of Nanomaterials in Wastewater Streams, Kunhikrishnan A et al., Critical Reviews in Environmental Science and Technology, 45(4), janvier 2015
- Silver nanoparticles could pose risk to aquatic ecosystems, European Commission DG Environment News Alert Service, issue 394, novembre 2014
- Toxicity of Physically and Chemically Made Silver Nanoparticles in Marsh Frog Tadpole (Rana ridibunda), International Journal of Environment and Sustainability, 3(3) : 14-19, 2014
- Transfer, Transformation and Impacts of Ceria Nanomaterials in Aquatic Mesocosms Simulating a Pond Ecosystem, Tella M et al., Environ Sci Technol, 48 : 9004-9013, 2014
- Sunscreens as a Source of Hydrogen Peroxide Production in Coastal Waters, Sánchez-Quiles D and Tovar-Sánchez A, Environ. Sci. Technol., 48 (16), 9037-9042, 2014
- Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing, Schultz A et al., Environmental Chemistry, 11(3) 207-226, 2014
- Toxicity of differently sized and coated silver nanoparticles to the bacterium Pseudomonas putida: risks for the aquatic environment?, Matzke M, Jurkschat K, Backhaus T, Ecotoxicology, 23(5):818-29, juillet 2014 (voir le résumé et le commentaire de Camille Larue en français dans le Bulletin de Veille scientifique de l'ANSES de juillet 2014 ici).
- Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver, PNAS, février 2014
- Particle Size and Agglomeration Affect the Toxicity Levels of Silver Nanoparticle Types in Aquatic Environment, Ecopersia, 1 (3), 273-290, novembre 2013
- The toxicity of silver nanoparticles to zebrafish embryos increases through sewage treatment processes, Ecotoxicology, 22(8), 1264-1277, octobre 2013
- Ecotoxicological Aspects of Nanomaterials in the Aquatic Environment, Schirmer K et al., in Safety Aspects of Engineered Nanomaterials, edited by Wolfgang Luther and Axel Zweck, 2013
- Exposure of juvenile Danio rerio to aged TiO2 nanomaterial from sunscreen, Fouqueray M et al., Environmental Science and Pollution Research, 20(5) : 3340-3350, mai 2013
- Assessing the Environmental Risks of Silver from Clothes in an Urban Area, Arvidsson R et al., Human and Ecological Risk Assessment, 20(4), juin 2012
- Toxicity of copper oxide nanoparticle suspensions to aquatic biota, Manusadianas L et al., Environ. Toxicol. Chem., 2;31:108-114, 2012
- Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route, Fouqueray M et al., Environmental Pollution, 163 : 55-61, 2012
- Effects of metallic and metal oxide nanoparticles in aquatic and terrestrial food chains. Biomarkers responses in invertebrates and bacteria, Thiéry A et al., International Journal of Nanotechnology, 9(3-7), 181-203, 2012
NOTES et REFERENCES
1 - Cf. http://veillenanos.fr/wakka.php?wiki=DevenirNanoEnvironnement#Acidite et http://veillenanos.fr/wakka.php?wiki=DevenirNanoEnvironnement#Salinite
2 - Uptake and retention of metallic nanoparticles in the Mediterranean mussel (Mytilus galloprovincialis), Aquatic Toxicology, mai 2013
3 - Voir par exemple Evidence for Biomagnification of Gold Nanoparticles within a Terrestrial Food Chain, Judy. J et al., Environ. Sci. Technol., 45 (2), 776-781 (2011) ; Food Chain Transport of Nanoparticles Affects Behaviour and Fat Metabolism in Fish, Cedervall T. et al., PLoS ONE, 7(2): e32254 (2012)
4 - Impact des nanomatériaux sur les bactéries de l'eau, les algues, les crustacés, les poissons, d'autres organismes aquatiques, une chaîne trophique aquatique simplifiée in Impact de nanoparticules de TiO2 et de nanotubes de carbone sur les végétaux, thèse, Camille Larue, 2011
5 - Voir aussi les références listées ici : http://veillenanos.fr/wakka.php?wiki=RisquesNanoArgent#ToxOrgAquatiQ
6 - Voir le rapport Toxicité et écotoxicité des nanotubes de carbone, ANSES, février 2011 (mis à jour en novembre 2012 dans le document Note d'actualité, État de l'art 2011-2012)
7 - Prise en compte de l'évolution de l'état d'agglomération dans l'étude de l'écotoxicité des nanoparticules, Nicolas Manier, Rapport scientifique 2013-2014, INERIS, novembre 2014, p.16
8 - Voir par exemple :
- Nanomaterials interact with agricultural pesticides, increasing toxicity to fish, The Organic Center, février 2015 (résumé vulgarisé de l'article scientifique Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: Nanotubes enhance pesticide ecotoxicity, Ecotoxicology and Environmental Safety, 111 : 131-137, janvier 2015)
- Fate of single walled carbon nanotubes in wetland ecosystems, Schierz A et al., Environ. Sci.: Nano, 2014 (et le communiqué de presse associé : Nanoparticles accumulate quickly in wetlands: Aquatic food chains might be harmed by molecules 'piggybacking' on carbon nanoparticles, Science Daily, 1er octobre 2014
- Spatial distribution, electron microscopy analysis of titanium and its correlation to heavy metals: Occurrence and sources of titanium nanomaterials in surface sediments from Xiamen Bay, China, Luo Z et al., J. Environ. Monit., 13, 1046-1052, 2011 : cette étude sur les sédiments de la baie du Xiamen en Chine a montré que ces sédiments contenaient jusqu'à 2,74 g Ti/kg, en grande partie sous forme d'agglomérats de 300 nm composés de nanoparticules d'une cinquantaine de nanomètres. La distribution du titane dans les sédiments est corrélée positivement à celle d'éléments tels que le plomb ou le zinc, ce qui va dans le sens d'une adsorption de polluants à la surface des nanoparticules.
- Carbon nanotubes as molecular transporters for walled plant cells. Liu Q, Chen B, Wang Q, et al. in Nano Lett., 9(3): 1007-10, 2009
- Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60, Baun, A., et al., in Aquatic Toxicology, 86: 379-387, 2008
- Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles, Zhang et al., Chemosphere 67(1):160-6, 2007
9 - Cf. Nanomaterials in sunscreens and boats leave marine life vulnerable, UC Davis News, 12 mai 2015 (communiqué de presse) ; Copper oxide and zinc oxide nanomaterials act as inhibitors of multidrug resistance transport in sea urchin embryos: Their Role as Chemosensitizers, WU B et al., Environ. Sci. Technol., 49 (9) : 5760-5770, avril 2015
10 - Cf. Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens, Jovanovic B et al., Environmental Pollution, 203 : 153-164, août 2015
11 - Voir notamment :
- Ecotoxicological Effects of Transformed Silver and Titanium Dioxide Nanoparticles in the Effluent from a Lab-Scale Wastewater Treatment System, Georgantzopoulou A et al., Environ. Sci. Technol., 52, 16, 9431-9441, 2018
- Les véritables effets des nanoparticules dans leur environnement, CORDIS, mars 2018 : "La plupart des nanomatériaux synthétiques émis dans l’environnement arriveront tôt ou tard dans nos océans et nos mers. Le projet SOS-Nano a conçu des tests afin de prédire leur toxicité pour le milieu marin. Les chercheurs ont utilisé un ingénieux système naturel d’exposition à l’eau in vivo pour tester les effets des nanoparticules d’oxyde métallique : l’oxyde de zinc (ZnO) et le dioxyde de manganèse (MnO2). Les larves d’huîtres ont souffert d’un niveau élevé de toxicité occasionnée par le ZnO, en revanche, les NP de MnO2 n’étaient pas toxiques dans tous les scénarios d’exposition".
12 - Cf. http://veillenanos.fr/wakka.php?wiki=EffetsNanoSante#EffetCocktail
13 - Quelles interactions entre les nanoparticules et les autres contaminants de l'environnement ?, Camille Larue, Bulletin de veille scientifique (BVS), Anses, décembre 2014
Fiche initialement créée en octobre 2014
Au vu des risques liés aux nanomatériaux, l'ANSES préconise un encadrement renforcé

Au vu des risques liés aux nanomatériaux, l'ANSES préconise un encadrement renforcé
Par MD, DL et l'équipe Avicenn - Article mis en ligne le 15 mai 2014 - Dernière modification le 10 juillet 2014L'Agence nationale de sécurité sanitaire (ANSES) a rendu public son rapport d'évaluation des risques liés aux nanomatériaux attendus depuis 2013. Ce rapport largement relayé par les médias est maintenant dans les mains des tutelles de l'ANSES. Quelles suites donneront-elles aux recommandations émises par l'agence ?
Sommaire
- Présentation du rapport
- Des risques préoccupants mais encore difficiles à évaluer
- Principales recommandations
- Premiers éléments d'analyse d'Avicenn
- Autres points marquants
- Premières réactions au rapport
Présentation du rapport
-
Une mise à jour des connaissances disponibles
En 2012 l'ANSES a confié à son groupe de travail pérenne "nanomatériaux et santé" un travail de mise à jour des connaissances sur ces risques.
Fin avril 2014, le rapport finalisé a été présenté au comité de dialogue "Nanomatériaux et Santé" ouvert à la société civile et auquel Avicenn participe. Il a ensuite été publié le 15 mai sur le site de l'ANSES2.
Il s'agit d'une "revue de la littérature" et non pas de la présentation de résultats de recherches effectuées au sein des laboratoires de l'ANSES.
-
Le point sur les risques sanitaires et environnementaux associés aux nanomatériaux manufacturés intentionnellement
- des risques liés aux nanomatériaux manufacturés intentionnellement ; il ne porte donc pas sur les nanoparticules naturelles ou "incidentelles".
- dans les domaines de l'alimentation, de l'environnement et de la santé ; bien que les risques sur les dérives éthiques possibles liées aux mésusages des nanotechnologies (surveillance ou manipulation du vivant notamment) ne soient pas traités en profondeur car hors du domaine de compétence de l'ANSES, ils font tout de même l'objet d'une présentation synthétique - phénomène suffisamment rare pour être signalé.
Des risques préoccupants mais encore difficiles à évaluer
L'ANSES montre que malgré la progression des connaissances scientifiques, les incertitudes restent importantes quant aux effets des nanomatériaux sur la santé et l'environnement.
Elle met en évidence des caractéristiques de danger très diverses - un tableau clinique qui fait "froid dans le dos" selon Pierre Le Hir du Monde3 qui cite parmi les effets répertoriés par l'ANSES de certains nanomatériaux sur les organismes vivants : "des retards de croissance, des malformations ou anomalies dans le développement ou la reproduction chez des espèces modèles", ainsi que "des effets génotoxiques et de cancérogénèse", ou encore "des effets sur le système nerveux central, des phénomènes d'immunosuppression, des réactions d'hypersensibilité et d'allergie".
L'ANSES insiste néanmoins sur la grande complexité à appréhender les situations d'exposition pour l'homme et l'environnement, rendant difficile de mener des évaluations spécifiques des risques.
Sur la base de tests in vitro et in vivo sur l'animal (il n'y a pas de données sur l'homme), le rapport met en évidence la capacité des nanomatériaux à passer les barrières physiologiques et pointe également la toxicité de certains d'entre eux.
Principales recommandations
L'ANSES émet plusieurs recommandations, notamment :
- stimuler la recherche pour réduire les incertitudes scientifiques encore très nombreuses, via la mise en œuvre de projets pluridisciplinaires permettant de développer les connaissances sur les caractéristiques des nanomatériaux et de leurs dangers, tout au long du cycle de vie des produits; il s'agit notamment de favoriser le développement d'essais de sécurité pertinents pour évaluer les risques sanitaires des produits contenant des nanomatériaux destinés à être mis sur le marché.
- se doter d'outils réglementaires et normatifs pour mieux protéger l'homme et l'environnement : l'ANSES se dit favorable à l'interdiction de certains nanomatériaux dans des produits grand public ! Le faisceau de données disponibles sur la toxicité de certains nanomatériaux apparaît en effet à l'Anses scientifiquement suffisant pour envisager leur encadrement selon la réglementation européenne CLP (règlement de classification, étiquetage et empaquetage des substances et des mélanges) et REACh (substances chimiques). L'Anses a, dans ce cadre, récemment publié des recommandations visant à adapter le règlement REACh à la prise en compte des caractéristiques propres aux nanomatériaux1. Ce cadre réglementaire permettrait de renforcer la traçabilité des nanomatériaux destinés à être intégrés dans les produits de consommation, depuis leur production jusqu'à leur distribution, afin notamment de mieux caractériser les expositions des populations, et permettre de mieux cibler les évaluations de risque à réaliser.
Premiers éléments d'analyse d'Avicenn
-
Une pression accrue sur les pouvoirs publics chargés de la gestion des risques
L'ANSES souligne que "malgré les efforts entrepris en pointillés [par les pouvoirs publics] pour adapter les cadres réglementaires préexistants à cet ensemble hétéroclite et potentiellement infini que constituent les nanomatériaux, l'absence d'évaluations sociale et économique concrètes de leur déploiement continue de se faire sentir" (p.28).
Dominique Gombert, directeur de l'évaluation des risques à l'ANSES, est clair : "Dans dix ans, il sera trop tard pour se poser la question de leur encadrement".
L'enjeu est de taille : il s'agit donc de mobiliser les pouvoirs publics afin qu'ils prennent les dispositions nécessaires pour ne pas répéter les erreurs du passé, en mettant notamment en place des mesures de restriction d'usage voire d'interdiction.
L'ANSES est favorable à des mesures de restriction d'usage voire d'interdiction pour certains nanomatériaux, notamment :
- les nanotubes de carbone,
- les nanoparticules d'argent,
- les nanoparticules de dioxyde de titane,
- les nanoparticules de dioxyde de silice,
- les nanoparticules d'oxyde de zinc,
- les nanoparticules d'oxyde de cérium,
- les nanoparticules d'oxyde d'aluminium,
- les nanoparticules d'or
Cette préconisation sera-t-elle suivie par les ministères de tutelle de l'ANSES ? Si oui, la France pourrait porter le dossier au niveau de l'Agence européenne des produits chimiques (ECHA).
-
Une question politique : comment financer les études de risques ?
Cette proposition rejoint celle faite par la société civile concernant la mise en place d'une taxe payée par les entreprises ayant une activité en lien avec des nanomatériaux manufacturés qui viendrait alimenter un fonds ensuite attribué à des laboratoires indépendants. Une taxe ne serait cependant "pas à la mode" a-t-on entendu lors de la réunion du comité de dialogue "Nanomatériaux et Santé" fin avril (2014)...
Quelle autre solution envisager alors ? Le Centre d'Information sur l'Environnement et d'Action pour la Santé (CEIAS), association loi 1901, propose que "l'argent du Crédit Impôt Recherche, qui est l'argent de l'État, soit utilisé pour évaluer la toxicité à court et long terme des nouveaux matériaux".
Vos avis et suggestions nous intéressent ! Car il s'agit assurément d'un chaînon manquant pour passer des paroles aux actes.
-
Quid des recherches sur les nanos dans l'alimentation à l'ANSES ?
Problème : malgré cette recommandation, l'ANSES a demandé aux chercheurs de ses propres laboratoires de Fougères et Lyon de finir leurs recherches en cours sur le sujet et de ne pas en lancer de nouvelles.
→ Voir à ce sujet notre lettre VeilleNanos parue en décembre dernier.
Depuis, le tout récent rapport d'activité 2013 du laboratoire de Lyon de l'ANSES publié début juin 2014 a confirmé que son "unité Maladies neurodégénératives (MND) a dû arrêter, à la demande de la direction scientifique des laboratoires de l'Anses, toute recherche sur la toxicologie des nanomatériaux" !
Interrogé à ce sujet par Avicenn le 29 avril 2014, à la fin de la dernière réunion du comité de dialogue "Nanomatériaux et Santé", le directeur général adjoint scientifique de l'ANSES avait invoqué un "recentrage" de l'ANSES sur ses domaines d'excellence, qui dans le domaine nano concernent davantage l'exposition par inhalation.
Reste que les recherches sur l'ingestion des nanomatériaux sont aujourd'hui très limitées (principalement au CEA de Grenoble et à l'INRA de Toulouse).
Autres points marquants
Parmi les autres points marquants, Avicenn a relevé les éléments suivants :
Le groupe de travail considère que "la prise en compte du cycle de vie des nanomatériaux est incontournable pour l'évaluation des risques" (depuis la conception jusqu'à la destruction ou recyclage des produits en passant par la consommation). Cette prise en compte passe notamment par "la transmission des FDS [fiches de données de sécurité] tout au long de la chaîne logistique", qui "devrait permettre le suivi du produit au cours de ses étapes de transformations industrielles" (p.27).
Le groupe de travail préconise "une amélioration du dispositif de déclaration (...) afin d'identifier de manière certaine les nanomatériaux manufacturés produits, distribués et importés sur le territoire national" (p.20). Il rejoint ici l'analyse produite par Avicenn le 2 décembre dernier4.
Il recommande également que soient recherchées, "dans le processus de gouvernance des risques des nanomatériaux, la transparence et une participation accrue des publics concernés (associations de citoyens, partenaires sociaux, professionnels de santé, etc.)" (p.70).
Premières réactions au rapport
-
Un rapport applaudi par des élus écologistes et des professionnels de la santé...
Corinne Lepage, autre députée européenne verte, aurait affirmé que "mettre sur le marché des produits dont on ne peut pas garantir l'innocuité, c'est prendre les consommateurs européens pour des cobayes. Il est urgent d'établir un cadre législatif rigoureux pour les nanomatériaux au niveau européen. L'union européenne doit imposer une évaluation indépendante des effets de ces particules sur la santé et l'environnement"6.
Le 18 mai, William Dab, médecin et épidémiologiste, écrit sur son blog que "le développement [des nouvelles technologies, dont les nanotechnologies] est plus rapide que notre capacité à en évaluer les risques. Ce n'est pas une raison suffisante pour les bloquer, mais cela justifie la plus grande vigilance et des investissements en recherche qui soient à la hauteur des enjeux sanitaires"7.
Le 19 juin, le groupe écologiste du Conseil régional du Centre a soumis un projet de vœux au vote visant à accroître la vigilance s'agissant des nanomatériaux, en s'appuyant notamment sur le rapport de l'ANSES. Il n'a pas réuni la majorité nécessaire pour être adopté 8.
-
... moins bien accueilli par l'industrie chimique
→ Ce rapport largement relayé par les médias est maintenant dans les mains des tutelles de l'ANSES. Quelles suites donneront-elles aux recommandations émises par l'agence ?
⇒ Vos avis et analyses nous intéressent : n'hésitez pas à nous les envoyer (redaction(at)veillenanos.fr) afin que nous puissions donner à nos lecteurs le point de vue de l'ensemble des acteurs concernés.
LIRE AUSSI sur notre site
Nos fiches :
- Les nanos à l'ANSES
- Quel encadrement des nanomatériaux dans les cosmétiques en Europe ?
- Quel encadrement des nanomatériaux dans les biocides en Europe ?
- Quel encadrement des nanomatériaux dans l'alimentation en Europe ?
- Vers un encadrement des nanomatériaux par le Règlement CLP ?
- Comment financer les études de risques liés aux nanomatériaux ?
Ailleurs sur le web :
- Pointant la toxicité de certains nanomatériaux, l'Anses appelle à un encadrement réglementaire renforcé, note d'actualité, ANSES, 15 mai 2014
NOTES ET REFERENCES :
1 - Voir la liste compilée sur notre fiche Les nanos à l'ANSES
2 - Evaluation des risques liés aux nanomatériaux - Enjeux et mise à jour des connaissances, ANSES, avril 2014 (mis en ligne le 15 mai 2014)
3 - Les nanomatériaux : ennemis invisibles et omniprésents, Le Monde, 15 mai 2014
4 - Voir notre article 500 000 tonnes de nanomatériaux en France... enfin pas tout à fait ! Bilan officiel de la 1ère année du dispositif de déclaration des "substances à l'état nanoparticulaire" en France, veillenanos.fr, 2 décembre 2013
5 - Les écologistes appellent d'urgence à règlementer les nanotechnologies au niveau européen, Europe Ecologie Sud-est, 15 mai 2014
6 - Nanomatériaux : des risques pour la santé, Viva Presse, 15 mai 2014
7 - Nanomatériaux et téléphones portables : toutes les incertitudes se valent-elles ?, Des Risques et des Hommes, 18 mai 2014
8 - Vœu relatif aux nanomatériaux : une vigilance accrue est nécessaire !, EELV Centre, 19 juin 2014
9 - Nanomatériaux : les industriels "surpris" par les recommandations de l'Anses, Usine nouvelle, 21 mai 2014
Pourquoi tant d'incertitudes sur les risques associés aux nanomatériaux ?
Pourquoi tant d'incertitudes sur les risques associés aux nanomatériaux ?
Par l'équipe Avicenn - Dernier ajout décembre 2020Cette fiche est rattachée à nos dossiers sur les Risques des nanomatériaux, tant concernant la santé que concernant l'environnement. Elle a vocation à être complétée et mise à jour avec l'aide des adhérents et veilleurs de l'Avicenn. Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr.
Les risques potentiels associés aux nanomatériaux fait l'objet de recherches et de nombreuses publications, mais leurs résultats sont souvent considérés comme difficiles à interpréter, pour différentes raisons listées ci-dessous1.
⇒ Pour autant, l'absence de certitudes sur les risques ne doit pas être assimilée à l'absence de risques - ni conduire à l'inaction : il s'agit de ne pas renouveler les erreurs du passé (essence au plomb, amiante, etc.) !
- les caractéristiques physico-chimiques des nanomatériaux testés ont, jusqu'à peu2, été insuffisamment décrites ou de façon trop hétérogène pour pouvoir reproduire les expériences et/ou comparer les résultats entre les différentes études or ces caractéristiques jouent un rôle très important sur la toxicité de ces matériaux, mettant à mal un principe phare de la toxicologie selon lequel "tout est poison, rien n'est poison : c'est la dose qui fait le poison" (phrase du médecin et alchimiste Paracelse a fondé la toxicologie et est très souvent invoquée pour évaluer les risques liés aux substances chimiques de synthèse).
Il n'existe pas encore de tests normalisés : les lignes directrices de l'OCDE, utilisées pour les essais toxicologiques des substances chimiques classiques ne sont pas encore complètement adaptées à l'étude des nanomatériaux3.
→ Ceci étant dit, il ne faut pas "jeter le bébé avec l'eau du bain" : ces études qui montrent des effets toxiques4 ne doivent pas être balayées d'un revers de main sous prétexte qu'elles ne permettent pas d'obtenir d'indications précises sur les mécanismes qui les ont causés.
Les recherches en cours donnent lieu à des améliorations notables.
- les études in vitro réalisées sur des modèles cellulaires sont difficilement extrapolables à l'homme
→ Les nanomatériaux sont testés sur différentes souches cellulaires (humaines, animales, végétales) et sur de nombreux micro-organismes (bactéries, virus, champignons...). Ces études donnent surtout des indications en termes de cancérogenèse et de viabilité cellulaire. Elles ne pourront remplacer totalement les tests in vivo.
- les études in vivo présentent elles aussi des limites : les modèles animaux de toxicité posent des problèmes éthiques et financiers mais également méthodologiques : leur extrapolation à l'homme est certes plus fiable que les tests in vitro mais n'est pas pour autant garantie5.
- les études sont souvent réalisées dans des conditions non représentatives de l'exposition réelle - et pour cause, les applications industrielles n'étant à l'heure actuelle pas bien connues ni quantifiées, elles ne peuvent être qu'estimées. L'exposition "probable" de la population et de l'environnement ne peut donc être, elle aussi, qu'estimée. Sur quels critères ?
- pour des questions pratiques, les nanomatériaux testés sont introduits directement dans certaines parties du corps et organes (ex : injections intracérébrales, intra-péritonéales par exemple), selon des modalités qui sont très éloignées des conditions par lesquelles l'environnement ou la population est réellement exposée, empêchant de bien prendre en compte ce qui se passe lors des mécanismes importants qui entrent en jeu "dans la vraie vie" (processus intervenant lors de la digestion / la fermentation / la détoxification par exemple). Des progrès sont néanmoins réalisés en matière environnementale, avec des études réalisées dans des mésocosmes par exemple - d'énormes aquariums reproduisant un mini éco-système dans lesquels est étudié à différents dosages le comportement des nanoparticules en contact avec des plantes, des poissons, du sol et de l'eau6.
- les études sont souvent menées sur des périodes bien trop courtes pour refléter les conditions réalistes d'exposition, largement chroniques en l'occurrence (les cas d'accidents sont aussi à prendre en compte, mais selon des configurations bien spécifiques)
- les nanomatériaux considérés sont souvent synthétisés en laboratoire et donc différents des nanomatériaux (et résidus de nanomatériaux) auxquels sont réellement exposés les écosystèmes et les populations humaines7, souvent plus complexes et mêlées à des éléments issus du vivant. Pour l'heure, les scientifiques ont en effet une connaissance très limitée des types de nanomatériaux qui sont incorporés dans les produits actuellement sur le marché, et a fortiori des résidus de dégradation des nanomatériaux relargués dans l'environnement tout au long du "cycle de vie" de ces produits
- les nanomatériaux peuvent se transformer au cours de leur cycle de vie, que ce soit dans l'environnement ou dans le corps humain : de nombreux paramètres entrent en ligne de compte, comme le degré d'acidité8 ou de salinité9 de l'eau par exemple.
- les doses de nanomatériaux testés sont en outre plus importantes que les concentrations auxquelles sont réellement exposés les écosystèmes et les populations humaines (notamment à cause des limites des appareils de détection et de mesure utilisés en laboratoire). Toutefois on ne peut écarter l'hypothèse que les effets constatés (ou d'autres) pourraient également intervenir à des concentrations plus faibles ; certains nanomatériaux (de silice notamment) sont plus génotoxiques à faibles doses qu'à fortes doses10. En outre les fortes concentrations permettent de simuler des situations de contamination aiguë et ponctuelle (par exemple un déversement accidentel sur un site de production, ou encore en cours de transport). Fin 2019, une étude a par ailleurs montré qu'une fraction importante des nanoparticules testées dans les études de nanotoxicité et de nanomédecine peut rester dans les seringues en plastique utilisées pour doser les nanoparticules ! Cela remet en cause la fiabilité et la reproductibilité des études11...
- En avril 2020, une analyse de la littérature a de nouveau souligné le manque de données concernant l'impact des nanomatériaux sur la fertilité féminine et le besoin d'études sur leurs effets sur les capacités reproductives12
La situation s'améliore cependant au niveau méthodologique13. Et à terme, le registre R-Nano devrait faire progresser les connaissances, en permettant de travailler plus précisément sur les nanomatériaux produits ou importés en France.
Mais les incertitudes resteront malgré tout très nombreuses, dans la mesure où pour évaluer le risque, il faut également prendre en compte ce avec quoi les nanomatériaux considérés - ou leurs résidus - vont entrer en contact dans l'environnement (êtres vivants végétaux, animaux, micro-organismes, et autres substances chimiques) et dans le corps humain...
→ On comprend pourquoi en 2009, des chercheurs ont estimé à cinquante années de travail et plusieurs centaines de millions de dollars le montant des études nécessaires pour étudier les risques des nanomatériaux déjà mis sur le marché14 ; des modalités de financement des études de risques associés aux nanomatériaux sont donc à inventer.
Le regroupement de nanomatériaux ayant des potentiels de toxicité similaire (read-accross) est une stratégie préconisée par certains acteurs industriels mais il est également contesté tant les écueils méthodologiques sont nombreux15.
Certains scientifiques préconisent de travailler sur des "nanoparticules modèles"16 ; on est donc encore loin d'obtenir des connaissances sur la toxicité et l'éco-toxicité des nanoparticules utilisées par les industriels...
⇒ L'absence de certitudes sur les risques ne doit pas être assimilée à l'absence de risques - ni conduire à l'inaction : il s'agit de ne pas renouveler les erreurs du passé (essence au plomb, amiante, etc.) !
Le Groupe de travail de l'OCDE sur les nanomatériaux manufacturés se penche actuellement sur l'évaluation des dangers et de l'exposition à différents types de nanomatériaux manufacturés et devrait prochainement formuler des orientations à cet égard. Il a suggéré fin 2015 de s'intéresser en priorité aux nanomatériaux manufacturés contenus dans des gaz ou des liquides, pour lesquels le risque d'exposition est plus élevé que pour les solides, dans la mesure où les gaz et liquides se propagent plus rapidement et pénètrent plus facilement dans le corps humain par inhalation ou ingestion17.
Plusieurs projets européens sont dédiés à ces questions, notamment :
- Le projet GRACIOUS : "Grouping, Read-Across, CharacterIsation and classificatiOn framework for regUlatory risk assessment of manufactured nanomaterials and Safer design of nano-enabled products", projet de recherche H2020, 2018-2021
- Le projet PATROLS : "Physiologically Anchored Tools for Realistic nanOmateriaL hazard aSsessment", projet de recherche H2020
- ENANOMAPPER Une approche intégrée sur la sécurité des nanotechnologies, Cordis, janvier 2018
- SmartNanoTox, "Smart Tools for Gauging Nano Hazards", 2016-2020
En savoir plus
Sur notre site :
- Notre rubrique Nano et Santé
- Nos fiches :
- "Caractéristiques physico-chimiques" et toxicité des nanomatériaux
- Nanomatériaux : des risques pour l'environnement mal cernés
- Nano et Alimentation - Risques pour la santé : inquiétudes et incertitudes
- Comment financer les études de risques associés aux nanomatériaux ?
- L'approche nano 'safe by design' ? Décryptage de l'Avicenn
Ailleurs sur le web :
- "Modèles toxicologiques expérimentaux appliqués aux nanomatériaux : Interférences et biais méthodologiques et conséquences dans leur interprétation", Diaporama et vidéo, Fabrice Nesslany, Institut Pasteur de Lille, Présentation au Colloque nano à la Maison de la Chimie, 7 novembre 2018 (voir aussi la vidéo de la séance Questions-Réponses)
- "Les nanomatériaux sont-ils toxiques ?" in La NANO révolution - Comment les nanotechnologies transforment déjà notre quotidien, Azar Khalatbari, éditions Quae, septembre 2018
- Opportunités et risques des nanomatériaux - Résultats, conclusions et perspectives - brochure finale, Programme national de recherche PNR 64 Fonds national suisse de la recherche scientifique, mars 2017
- Léa Durand et Paul Tossa (EDF), Évaluation toxicologique des nanomatériaux d'oxydes métalliques : quelle place actuelle pour la modélisation « structure-activité » ?, Environnement, Risques & Santé, 15(6), novembre-décembre 2016
- Francelyne Marano, Faut-il avoir peur des nanos ?, Buchet Chastel, avril 2016
- Isabelle Passagne, Evaluation de la toxicité de NPs d'oxydes métalliques par un modèle de culture cellulaire 3D et une approche de toxicogénomique, BVS, n°25, mars 2016
- ANSES, Dossier du participant préparé pour la Restitution du Programme national de recherche environnement santé travail (PNREST), octobre 2015
- Fabienne Gauffre, Les nanoparticules, un défi pour les toxicologues, Le Monde, 8 septembre 2015
- Nanotechnologies: pour un dialogue interdisciplinaire sur les problèmes de risques, avec Patrick Chaskiel et Emmanuel Flahaut (vidéo), 3 février 2016
- Connaître et maîtriser les risques des nanoparticules, Frejafon E, INERIS, vidéo et diaporama présentés lors de la journée de formation « FormaSciences » à l'ENS de Lyon, 26 février 2015
- Existe-t-il un lien entre caractéristiques physico-chimiques des nanomatériaux et leur écotoxicité ?, Camille Larue, Bulletin de Veille scientifique de l'ANSES, juillet 2014
- Potentiel génotoxique des nanomatériaux : où en est la recherche ?, Tossa P et al., Environnement, risques & santé, mars-avril 2014
- Principles and methods to assess the risk of immunotoxicity associated with exposure to nanomaterials, World Health Organisation (WHO - OMS), Environmental Health Criteria 244, 12 avril 2020
- Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years?, Warheit D., F1000Research, 2018
- Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems, (Critical Review), Laux P et al., Environ. Sci.: Nano, 5, 48-63, 2018
- Nanomaterial risk assessment frameworks and tools evaluated, European Commission DG Environment News Alert Service, 484, 9 mars 2017
- Reliability of methods and data for regulatory assessment of nanomaterial risks, Steinhäuser KG et al., NanoImpact, 10 : 68–69, avril 2018
- How safe are nanomaterials?, Valsami-Jones E & Lynch I, Science, 350 (6259): 388-389, 23 octobre 2015
- Bridging the divide between human and environmental nanotoxicology, Malysheva a et al., Nature Nanotechnology, octobre 2015
- Topical scientific workshop: Regulatory challenges in the risk assessment of nanomaterials, ECHA, juin 2015
- EuroNano Forum 2015 - Joint Seminar on NanoSafety: ProSafe, NANoREG, SIINN, OECD, NanoDefine and NanoValid, juin 2015 (voir le rapport de CIEL, Öko-Institut et ECOS ici ).
- DaNa, Data and knowledge on Nanomaterials : Information about nanomaterials and their safety assessment
- Assessing health & environmental risks of nanoparticles : Current state of affairs in policy, science and areas of application, RIVM, 2015
- Linking exposures of particles released from nano-enabled products to toxicology: An integrated methodology for particle sampling, extraction, dispersion and dosing, Toxicol. Sci., Pal AK et al., 2015
- Toxicity Risks of Engineered Nanomaterials, CIEL, ECOS et Öko Institut, janvier 2015
- Nanosafety research: The quest for the gold standard, ScienceDaily, 29 octobre 2014
- Identification and Avoidance of Potential Artifacts and Misinterpretations in Nanomaterial Ecotoxicity Measurements, Petersen E J, Environ. Sci. Technol., 48 (8), pp 4226-4246, mars 2014
- Handbook of Nanosafety, Measurement, Exposure and Toxicology, ed. by Ulla Vogel & Kai Savolainen & Qinglan Wu & Martie van Tongeren & Derk Brouwer & Markus Berges, 2014
NOTES et REFERENCES
1 - Les différentes raisons ont été soulignées par les agences sanitaires et scientifiques ; voir par exemple Évaluation des risques liés aux nanomatériaux pour la population générale et pour l'environnement, Afsset (aujourd'hui ANSES), mars 2010 : "Nombreux sont les travaux toxicologiques et écotoxicologiques analysés au cours de cette étude pour lesquels les travaux de caractérisation sont absents ou incomplets. Cependant, les articles les plus récents tendent à prendre de plus en plus en compte la caractérisation des nanomatériaux étudiés. Les études de cas reposent la plupart du temps sur des études génériques (toxicologie et écotoxicologie) non propres au produit de consommation considéré. La majorité des études sur l'écotoxicité des nanoparticules a été conduite avec des nanoparticules de synthèse et non issues du produit fini considéré. De plus, les concentrations sont si élevées qu'elles ne reflètent pas la réalité de l'exposition environnementale à ces contaminants. L'hétérogénéité des travaux et des effets selon les espèces, les protocoles, les nanoparticules et les doses considérés est à souligner" (p.119).
2 - Des améliorations sont déjà perceptibles. Divers groupes de travail ont tenté de définir les paramètres qui devraient être systématiquement précisés dans tous les articles (et insistent sur le fait que la description détaillée des conditions expérimentales est également indispensable). Dans son édito du 19 août 2012, la revue Nature Nanotechnology a appelé les chercheurs à se mettre d'accord pour définir les informations nécessaires à préciser dans les publications scientifiques afin de stabiliser ce socle de caractérisation que devraient comporter tous les articles de nanotoxicologie. Voir les suites de cet appel dans le numéro de février 2013 de la même revue : The dialogue continues, Nature Nanotechnology, 8, 69, février 2013 : The nanotoxicology community has numerous ideas and initiatives for improving the quality of published papers.
3 - Des travaux sont en cours en vue de cette adaptation. Voir notamment :
- Adapting OECD Aquatic Toxicity Tests for Use with Manufactured Nanomaterials: Key Issues and Consensus Recommendations, Petersen EJ et al., Environ. Sci. Technol., 49 (16) : 9532-9547, 2015
- Nanotechnology Regulation and the OECD, CIEL, ECOS, Öko-Institute, janvier 2015
- Ecotoxicology and Environmental Fate of Manufactured Nanomaterials: Test Guidelines, the Working Party on Chemicals, Pesticides and Biotechnology, OCDE, mars 2014
4 - La base de données NanoEHS animée par the International Council on Nanotechnology (ICON) répertoriait les publications scientifiques sur les risques en nanotechnologies ; mais elle n'est plus accessible en 2016 ; à défaut, voir par exemple nos fiches Risques associés aux nanotubes de carbone ; Risques associés aux nanoargents ; Risques associés au nano dioxyde de titane ; Risques associés aux nanosilices
5 - Voir par exemple Les humains ne sont pas des rats de 70kg, Association Antidote Europe, 2011 ; voir aussi Comment le test sur les rats échoue à protéger les hommes, Stéphane Foucart, Le Monde, 22 octobre 2012
6 - Cf. MESONNET : Utilisation de mésocosmes terrestres et aquatiques en réseau pour l'évaluation du risque associé à la dispersion de nanoparticules manufacturées, projet du CEREGE ; et les équipements de l'INERIS : Les leçons des écosystèmes synthétiques, Le Monde, 20 nov. 2013
7 - Cf. par exemple Yang Y et al., Characterization of Food-Grade Titanium Dioxide: The Presence of Nanosized Particles, Environ. Sci. Technol., 2014, 48 (11), pp 6391-6400
8 - Cf. http://veillenanos.fr/wakka.php?wiki=DevenirNanoEnvironnement#Acidite
9 - Cf. http://veillenanos.fr/wakka.php?wiki=DevenirNanoEnvironnement#Salinite
10 - Cf. Résultats du programme européen Nanogenotox sur la génotoxicité des nanomatériaux, présentés en français à l'ANSES, lors de la Restitution du programme national de recherche environnement santé travail : Substances chimiques et nanoparticules : modèles pour l'étude des expositions et des effets sanitaires : Dossier du participant et Diaporama, novembre 2013. Et "L'évaluation toxicologique des nanomatériaux doit évoluer, selon un projet européen de recherche", APM International, 14 novembre 2013. Plus généralement, on commence à mieux comprendre l'effet des faibles doses et à s'apercevoir que ces effets peuvent être tout aussi délétères que des doses importantes ou avoir des effets antagonistes en fonction des doses. Les effets-doses viennent complexifier considérablement les recherches en toxicologie. Voir par exemple Le problème sanitaire des faibles doses, Elizabeth Grossman, juillet 2012 ; La seconde mort de l'alchimiste Paracelse, Stéphane Foucart, 11 avril 2013
11 - Cf. Failure to launch: nano toxicity studies may be affected by nanoparticles staying behind in syringes, European Union Observatory for Nanomaterials, 25 novembre 2019 and Unpredictable Nanoparticle Retention in Commonly Used Plastic Syringes Introduces Dosage Uncertainties That May Compromise the Accuracy of Nanomedicine and Nanotoxicology Studies, Holtzwarth U et al., Frontiers in pharmacology, novembre 2019
12 - Cf. Female fertility data lacking for nanomaterials, European Observatory of Nanomaterials, 6 avril 2020 and A critical review of studies on the reproductive and developmental toxicity of nanomaterials, ECHA / Danish National Research Centre for the Working Environment, avril 2020
13 - Un exemple, à titre illustratif : le projet Nanomique développé au CEA en partenariat avec l'Institut Lavoisier (CNRS) de l'Université de Versailles, est une approche de criblage systématique pour définir la toxicité d'une quinzaine de nanoparticules (déjà utilisées dans l'industrie) sur des lignées cellulaires de cancers de poumon humain et sur des tissus pulmonaires cultivés en trois dimensions. Il s'appuie sur une plateforme de criblage (« screening ») à haut débit : un dispositif permettant d'effectuer de très nombreux tests en parallèle sur des cultures de cellules. Il permet ainsi de tester rapidement différentes concentrations de nanoparticules et différents types de cellules. Cf. "Mesures des effets toxicologiques de nano-oxydes métalliques sur cellules humaines in vitro", Chevillard S, in Nanomatériaux et santé - Comprendre où en est la recherche, ANSES, Les cahiers de la recherche, octobre 2015
14 - Voir notre fiche Comment financer les études de risques associés aux nanomatériaux ?, veillenanos.fr
15 - Voir au sujet du regroupement des nanomatériaux ("grouping" et "read-accross") :
- NanoApp, un projet ECETOC, lancé en décembre 2020 ("this tool is used to establish and justify sets of nanoforms and identify poorly soluble – low toxicity (PSLT) nanoforms").
- A framework for grouping and read-across of nanomaterials- supporting innovation and risk assessment, Stone V et al., Nano Today, 35, décembre 2020
- Grouping all carbon nanotubes into a single substance category is scientifically unjustified, Bengt Fadeel & Kostas Kostarelos, Nature Nanotechnology, mars 2020
- Catégoriser les nanomatériaux pour obtenir une évaluation efficace des dangers et des risques qu’ils présentent, Cordis, NanoREG II, 17 décembre 2019
- Material-specific properties applied to an environmental risk assessment of engineered nanomaterials – implications on grouping and read-across concepts, Wigger H et Nowack B, Nanotoxicology, 13(5) : 623-643, février 2019
- Understanding the legal term Nanoform in REACH (and 'set of similar nanoforms') – A discussion Workshop between ECHA and Industry Experts, CEFIC & NIA, 16 octobre 2018
- Nanotechnology experts from across the globe join forces to advance nanomaterials safety testing through Grouping and Read Across, NanoReg2 et Gracious, septembre 2018
- Criteria for grouping of manufactured nanomaterials to facilitate hazard and risk assessment, a systematic review of expert opinions, Landvik NE et al., Regulatory Toxicology and Pharmacology, 95 : 270-279, juin 2018
- GRACIOUS: Grouping, Read-Across, CharacterIsation and classificatiOn framework for regUlatory risk assessment of manufactured nanomaterials and Safer design of nano-enabled products, projet de recherche H2020, 2018-2021
- Grouping and read-across for nanoforms, ECHA, 30 novembre 2017
- Conference on Categorization of Next Generation Nanomaterials, FutureNanoNeeds, 30 novembre et 1er décembre 2017
- Considerations about the relationship of nanomaterial’s physicalchemical properties and aquatic toxicity for the purpose of grouping, UBA, novembre 2017
- Effets des nanoparticules sur les cellules immunitaires humaines, Denis Girard, IRSST, novembre 2017 : "L’ensemble des résultats démontre clairement qu’il est difficile de classifier les NP strictement selon leur potentiel à modifier l’une ou l’autre des fonctions étudiées. Il est préférable de présenter un tableau plus nuancé dans lequel les effets provoqués par une NP donnée sur la biologie des ÉO humains in vitro doivent être pris en considération pour en éclaircir le mode d’action. Les effets des NP sont donc extrêmement variés et la présente étude vise à démontrer qu’elles n’agissent pas toutes de la même façon."
- Approaches on nano-grouping/equivalence/read-across concepts based on physical-chemical properties (Gera-PC) for regulatory regimes, OCDE, janvier 2016
- NanoToxClass - Assessment of the health effects of industrially used nanomaterials to be made more efficient, BfR, 18 janvier 2016
- ECETOC concept allows assessing the safety of nanomaterials undertaking animal testing only as a very last resort, ECETOC, 16 décembre 2015
- les travaux du projet européen de recherche NanoSolutions (2013-2017), qui cherche à identifier les caractéristiques des nanomatériaux manufacturés qui déterminent leur potentiel de risque biologique. Il permettra de développer un modèle de classification de sécurité pour ces nanomatériaux, basé sur une compréhension de leurs interactions avec des organismes vivants
- Regroupement de nanomatériaux : un outil pour évaluer les risques, OFSP, août 2015 : Le concept de regroupement proposé par l'OFSP prévoit en premier lieu de classer sous forme d'entités les nanomatériaux conçus de manière très similaire en s'appuyant sur un ensemble de critères. Dans une deuxième phase, les entités sont rattachées à des "clouds". Au sein d'un même "cloud", les entités peuvent être évaluées avec la même stratégie de test.Cf. Walser & Studer, Sameness: The regulatory crux with nanomaterial identity and grouping schemes for hazard assessment, Regulatory Toxicology and Pharmacology, 72(3) : 569-571, août 2015
- Grouping nanomaterials - A strategy towards grouping and read-across, RIVM, juin 2015
- EU toxicology body publishes grouping framework for nanomaterials - Risk assessment tool contributes to sustainable development of nano products, Chemical Watch, 2 avril 20115 et A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping), Arts JHE et al., Regulatory Toxicology and Pharmacology, 71(2) : S1-S27, mars 2015
- A critical appraisal of existing concepts for the grouping of nanomaterials, Regulatory Toxicology and Pharmacology, 70(2) : 492-506, novembre 2014
- Grouping of nanomaterials for risk assessment, Bolt HM, Archives of Toxicology, novembre 2014
- A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs, Nano Today, 9(3) : 266-270, juin 2014
16 - Cf. notamment :
- "Nanotubes d'imogolite : un nouveau matériau modèle en nanotoxicologie ?" par Rose J et al., in Dossier du participant préparé pour la Restitution du Programme national de recherche environnement santé travail (PNREST), octobre 2015
- "Vers un matériau modèle en nanotoxicologie ?", Rose J et "Mesures des effets toxicologiques de nano‐oxydes métalliques sur cellules humaines in vitro", Chevillard S in Nanomatériaux et santé - Comprendre où en est la recherche, ANSES, Les cahiers de la recherche, octobre 2015
17 - Cf. OCDE, Les nanomatériaux dans les flux de déchets (Chapitre 1, aperçu général), novembre 2015
Fiche initialement créée en novembre 2013
Les nanos à l'ANSES
Les nanos à l'ANSES
Par l'équipe Avicenn - Dernier ajout juillet 2020 (partie "Recherches" à actualiser)Cette fiche a vocation à être progressivement complétée et mise à jour avec l'aide des adhérents et veilleurs de l'Avicenn. Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr.

Rapports déjà publiés
Depuis 2006, l'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES, née de la fusion de l'Afsset et de l'Afssa) a publié de nombreuses expertises sur les risques sanitaires et environnementaux liés aux nanomatériaux :
- Nanomatériaux dans les produits destinés à l’alimentation ; Rapport d'expertise collective, mai 2020
- Revue des méthodes analytiques disponibles pour la caractérisation des nano-objets, de leurs agrégats et agglomérats en vue de répondre aux exigences réglementaires, février 2020
- Avis relatif aux risques liés à l’ingestion de l’additif alimentaire E171, Anses, 15 avril 2019
- Avis relatif à une demande d'avis relatif à l'exposition alimentaire aux nanoparticules de dioxyde de titane, ANSES, avril 2017
- Evaluation des risques sanitaires et environnementaux liés à l'exposition aux nanoparticules d'argent, février 2015
- Evaluation des risques liés aux nanomatériaux, avril 2014
- Avis relatif à la modification des annexes de REACh en vue de la prise en compte des nanomatériaux, avril 2014
- Evaluation des risques liés au GRAPHISTRENGTH C100 (nanotubes de carbone d'Arkema), novembre 2013 (mis en ligne janvier 2014)
- Toxicité et écotoxicité des nanotubes de carbone - Note d'actualité, État de l'art 2011-2012, novembre 2012
- Evaluation des risques liés au GRAPHISTRENGTH C100 (nanotubes de carbone d'Arkema), avril 2012
- Évaluation des risques liés aux nanomatériaux pour la population générale et pour l'environnement, mars 2010
- Nanotechnologies et nanoparticules dans l'alimentation humaine et animale, mars 2009
- Les nanomatériaux - Sécurité au travail, mai 2008
- Les nanoparticules manufacturées dans l'eau, février 2008
- Les nanomatériaux - Effets sur la santé de l'homme et sur l'environnement, juillet 2006
Parallèlement à ces activités, l'ANSES a contribué aux actions de développement de nouvelles méthodologies d'évaluation des risques, en direction des professionnels, au travers d'actions de normalisation ou de la définition de tests de sécurité :
- La méthode "ERS Nanos : Méthode d'évaluation des niveaux de risques sanitaires et des dangers écotoxicologiques des produits contenant des nanomatériaux manufacturés, avril 2015 (mis en ligne en 2016)1
- Développement d'un outil de gestion graduée des risques spécifique au cas des nanomatériaux, janvier 2011
Recherches nano financées ou menées par l'ANSES
- Principales recherches nano en cours
→ Voir les projets en cours mentionnés ici :
- RISKGONE, projet financé par la Commission européenne (2019-2023)
- Trois projets relatifs aux risques associés aux nanomatériaux avaient été retenus par l'Agence nationale de sécurité sanitaire (Anses) dans le cadre de son Programme national de recherche "Environnement Santé Travail" (PNR EST) suite à l'appel à projets 2019 :
- NanOCo : Impact sur les fonctions endocrines de NANoparticules métalliques seules et en mélange avec des composés Organiques perturbateurs endocriniens pour l’analyse de l’effet COcktail
- NANOWAVE : Evaluation de la co-exposition de nanomatériaux avec des ondes radiofréquences
- NaPeauLi : Développement d’un modèle expérimental pour l’étude de la décontamination de la peau après une exposition cutanée aux nanoparticules métalliques
- Recherches nano passées
- Appels à projets de recherche 2017 du PNR EST - Résumés des dossiers retenus, mars 2018
- Appels à projets de recherche 2016 du PNR EST - Résumés des dossiers retenus, 2017
- Dossier du participant préparé pour la Restitution du Programme national de recherche environnement santé travail (PNREST), octobre 2015
- Appels à projets de recherche sur la santé environnement et la santé au travail 2014 - Résumés des dossiers retenus pour financement, 2015
En mars 2014, le laboratoire de Fougères de l'ANSES a commencé son projet SolNanoTOX : Détermination de facteurs de toxicité au niveau intestinal et hépatique de deux nanoparticules de taille similaire utilisées en alimentation et en emballage (aluminium et dioxyde de titane) : Recherches in vitro et in vivo sur l'absorption et les mécanismes impliqués.
- Autres partenaires français : ISCR Institut des Sciences Chimiques de Rennes et Biosit UMS Biosit - Plateforme microscopie électronique MRic TEM
- Partenaires allemands : Federal Institute for Risk Assessment (BfR ) et University of Leipzig (ULEI)
- Période : mars 2014 - mars 2018
- Aide de l'ANR : 401 399 euros
De 2010 à 2013, l'ANSES a coordonné le programme de recherche NANOGENOTOX auquel ont participé plusieurs laboratoires de l'ANSES (Anses Fougères et Maisons Alfort). Ce programme a rassemblé 30 partenaires (organismes scientifiques et ministères) issus de 13 Etats-membres de l'Union européenne pour étudier quatorze types de nanomatériaux manufacturés dont certains à usage alimentaire. Il a permis de contribuer au développement futur d'une méthode de détection du potentiel génotoxique des
nanomatériaux manufacturés. → Voir notre brève RISQUES : Les leçons du programme de recherche Nanogenotox, veillenanos.fr, 30 décembre 2013
→ Voir également :
- Dossier du participant préparé pour la Restitution du Programme national de recherche environnement santé travail (PNREST), octobre 2015
- Appels à projets de recherche sur la santé environnement et la santé au travail 2015 - Résumés des dossiers retenus pour financement, 2015
- Appels à projets de recherche sur la santé environnement et la santé au travail 2014 - Résumés des dossiers retenus pour financement, 2014
Autres travaux nano
Depuis 2012, l'ANSES a mis en place un comité de dialogue "Nanomatériaux et Santé", ouvert à la société civile et auquel AVICENN participe. Ses réunions sont néanmoins de plus en plus rares.
Depuis 2012 également, le Réseau R31 animé par l'ANSES (qui regroupe 31 instituts ou organismes français de recherche et d'évaluation de risques environnementaux ou sanitaires) se penche sur les risques associés aux nanomatériaux.
Depuis 2013, le laboratoire de Fougères participe au programme européen NANoREG.
Depuis 2013, l'ANSES est chargée de la gestion des déclarations et des données de R-Nano, le dispositif de déclaration des nanomatériaux produits, importés et distribués en France ; elle est également chargée d'examiner les possibilités d'exploitation à des fins d'évaluation des risques sanitaires des informations issues des déclarations.
En 2014-2015, l'exploitation des données du registre R-Nano et leur impact sur l'évaluation des expositions et des risques professionnels ont fait l'objet de discussions au sein du "groupe de travail permanent nanomatériaux et santé" de l'ANSES2, mais début 2015, le groupe a été remercié sans être renouvelé, malgré les indications contraires qui avaient été données au moment de sa création (et qui lui avaient valu l'appellation, a posteriori inopportune, de "groupe pérenne").
En 2013, suite à la demande du gouvernement, l'ANSES a évalué le dioxyde de silice (substance qui se présente sous forme nanoparticulaire) en tant que substance active insecticide dans le cadre du Règlement européen Biocides 528/20123, qui a conduit à son autorisation sur le marché européen (en tant que biocide) en 2015.
A partir de 2014, l'exploitation des données du registre R-Nano a permis de documenter l'évaluation du dioxyde de titane dans le cadre du plan d'action communautaire pour l'évaluation des substances du règlement REACH2.
En octobre 2016, l'ANSES a été saisie par ses ministères de tutelle pour étudier les risques liés aux nanoparticules dans l'alimentation, et plus précisément :
- réaliser une étude détaillée de la filière agro-alimentaire au regard de l'utilisation des nanos dans l'alimentation,
- prioriser les substances et/ou produits finis d'intérêt en fonction de critères pertinents déterminés au cours de l'expertise,
- réaliser une revue des données disponibles (effets toxicologiques et données d'exposition)
- et en fonction de leur disponibilité, étudier la faisabilité d'une évaluation des risques sanitaires pour certains produits.
Les nanomatériaux sont toujours au programme de travail 2020 de l'Anses : préparation de la consultation publique sur la recommandation de définition des nanomatériaux, poursuite des travaux sur les nanoparticules dans l’alimentation prévus par le PNSE3, ainsi que sur les filières industrielles qui utilisent des nanoparticules, poursuite de la gestion du portail national de déclaration obligatoire et synthèse des pistes d'exploitation et de partage de données issues de r-nano, évaluation de substances sous forme nanométrique dans le cadre de REACH, ...
LIRE AUSSI :
- Nos fiches :
- Le comité de dialogue "Nanomatériaux et Santé" de l'ANSES
- Le Groupe de travail pérenne "Nanomatériaux et santé" de l'ANSES
- Le Réseau R31 animé par l'ANSES
- Le registre R-Nano - La déclaration annuelle des nanomatériaux en France, obligatoire depuis 2013
- Quel encadrement des nanos par REACH ?
- Nos articles d'actualité :
- L'ANSES recommande de limiter la mise sur le marché de produits contenant des nanoparticules d'argent, 5 mars 2015
- FRANCE : Au vu des risques liés aux nanomatériaux, l'ANSES préconise un encadrement renforcé, veillenanos.fr, mars 2014
- FRANCE : Les nano dans l'alimentation : rôles et compétences de l'ANSES ?, veillenanos.fr, 30 décembre 2013
- FRANCE : L'ANSES reporte à 2014 la publication de travaux sur les risques associés aux nanomatériaux, veillenanos.fr, 30 décembre 2013
- FRANCE : Le bilan de la 1ère année du dispositif de déclaration des nanomatériaux en France enfin en ligne !, veillenanos.fr, 2 décembre 2013
- FRANCE : Vous souhaitez contribuer à orienter les travaux de recherche sur le thème "nanomatériaux et santé" ? Déclarez-vous à l'ANSES d'ici le 30 mai, veillenanos.fr, 2 mai 2012
Ailleurs sur le web
- Regards sur dix ans de recherche - Le PNR EST, de 2006 à 2015, ANSES, novembre 2016
- Nanomatériaux et santé - Comprendre où en est la recherche, Les cahiers de la recherche, ANSES, octobre 2015
- Rapport d'activité de l'ANSES, 2013
- La page "Nanomatériaux" du site de l'ANSES
NOTES et REFERENCES
1 - Sa publication était attendue depuis 2014 ; elle avait été présentée au Comité de dialogue nano et santé de l'ANSES d'avril 2015 puis lors de la Restitution du Programme national de recherche environnement santé travail (PNREST) en octobre 2015 : cf. le Dossier du participant préparé pour la Restitution du Programme national de recherche environnement santé travail (PNREST), octobre 2015 (p. 12)
2 - Orientations de l'Anses dans le domaine de la santé au travail pour 2014 présentées au conseil scientifique le 16 septembre, au conseil d'administration le 19 septembre et au comité d'orientation thématique le 23 octobre 2013
3 - Les Nanomatériaux, Site du ministère de l'écologie > Prévention des risques > Gestion des produits chimiques > Nanomatériaux, page consultée le 18/11/14 et Dossier de presse - Evaluation des risques liés aux nanomatériaux, enjeux et mise à jour des connaissances, ANSES, mai 2014
4 - Réponse à la question N° 85181 du député Yves Daniel, ministère des Affaires sociales, de la santé et des droits des femmes, octobre 2016
5 - L'Anses lance un appel à candidatures d'experts scientifiques afin de procéder à la constitution d'un groupe de travail (GT) «Nanos & Alimentation », ANSES, janvier 2017
6 - Communication Conférence "Nano in Belgium", 1er octobre 2018
7 - Annonce faite lors du comité de dialogue nano et santé de l'ANSES le 26 novembre 2018
Fiche initialement créée en février 2014
Nanomatériaux / nanoparticules dans l'eau
Nanomatériaux / nanoparticules dans l'eau
Par l'équipe Avicenn - Dernière modification mai 2020
Ce dossier a vocation à être complété et mis à jour avec l'aide des adhérents et veilleurs d'Avicenn.
Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant des références à l'adresse redaction(at)veillenanos.fr.
La commercialisation et l'utilisation de nanomatériaux manufacturés se sont considérablement accrues depuis le début des années 2000 dans de nombreux domaines : cosmétiques, textiles, électroménager, équipements de sport, vitres et matériaux de construction, voitures, aéronautique, bateaux, alimentation, etc.
De plus en plus de nanomatériaux, nanoparticules ou résidus de nanoparticules sont présents dans les eaux usées et conduits pour partie jusqu'aux stations d'épuration, puis dans les rivières et cours d'eau. Avec quelles conséquences pour la faune et la flore aquatiques ? Quid des microorganismes des sols sur lesquels sont épandues les boues de station d'épuration ?
Des inquiétudes se profilent parmi un nombre croissant d'acteurs. Qui fait quoi sur ces différents aspects ?
Sur toutes ces questions, seules sont aujourd'hui accessibles des informations éparses, souvent difficiles à comprendre pour le non spécialiste ou n'abordant qu'un aspect particulier sans donner de vision d'ensemble.
Ce dossier initié en 2015 rassemble donc les informations disponibles ainsi que les questions qui se posent aujourd'hui et qui pourraient devenir un problème en l'absence d'action de la part des différentes institutions concernées.
Il s'agit d'une base que nous souhaitons compléter et mettre à jour en fonction de l'évolution des connaissances : vos contributions sont les bienvenues !

Sommaire
- Applications des nanotechnologies pour l'analyse et le traitement de l'eau
- Détection / caractérisation des résidus de nanomatériaux dans l'eau
- Relargage et devenir des nanomatériaux dans l'eau
- Problèmes dans les stations d'épuration ?
- Effets sur la faune et la flore aquatiques
- Quelles actions des pouvoirs publics et des gestionnaires de l'eau ?
- Consultation Naneau en 2016 : une action Avicenn soutenue par l'ONEMA
- Mettre les nanos au menu des Assises de l'eau 2018
- Consultations des Agences de l'Eau : de novembre 2018 à mai 2019
Donner votre avis du 2/11/18 au 2/05/19 - Annexes :
LIRE AUSSI sur notre site :
- Notre dossier synthétique Nanomatériaux et Environnement
- Notre page Nanoplastiques
Fiche initialement mise en ligne entre février 2015
Dossier : Nanomatériaux et Environnement

Dossier : Nanomatériaux et Environnement
Par l'équipe Avicenn - Dernière modification décembre 2020Ce dossier synthétique a vocation à être complété et mis à jour. Vous pouvez contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr.
Sommaire
- Les "promesses" des nanos en matière d'environnement
- Des risques pour l'environnement de plus en plus documentés, mais encore insuffisamment cernés
- Des données parcellaires font état d'effets potentiels préoccupants sur la faune et la flore
- Des risques aussi mobiles que les nanomatériaux
- Les conditions d'expérimentation sont souvent très éloignées de celles rencontrées dans la réalité
- L'évaluation des risques se heurte à la complexité due à la multitude de paramètres à prendre en compte
- Les incertitudes donnent lieu à des divergences d'interprétation
- Les nanomatériaux peuvent accroître la dissémination d'autres polluants
- Des risques accrus par les interactions des nanomatériaux entre eux ou avec d'autres polluants
- Quelles conséquences de la dissémination des nanomatériaux bactéricides ?
- Des données parcellaires font état d'effets potentiels préoccupants sur la faune et la flore
- Comment appliquer le principe de précaution ?
- Mener des études supplémentaires : lesquelles et à quel prix ? Financées par le contribuable et/ou les industriels ?
- Limiter la commercialisation / les usages des nanomatériaux ?
- Développer l'éco-conception des nanomatériaux ?
- Contrôler les sources industrielles d'émissions de nanomatériaux ?
- Géolocaliser les relargages de nanomatériaux afin de cibler les zones les plus à risques
- Mener des études supplémentaires : lesquelles et à quel prix ? Financées par le contribuable et/ou les industriels ?
- La question environnementale, porte d'entrée d'une approche plus globale ?
- Annexe : Les acteurs mobilisés sur la question
- Pour aller plus loin
- Quel relargage des nanomatériaux dans l'environnement ?
- Quels devenir et comportement des nanomatériaux manufacturés dans l'environnement ?
- Nano et eau
- Détecter et mesurer les nanomatériaux ?
- Pourquoi tant d'incertitudes sur les risques associés aux nanomatériaux ?
- Comment financer les études de risques associés aux nanomatériaux?
- Nanos et stations d'épuration
- Les nanos dans le Plan "Mon Environnement, Ma santé" (PNSE 4)
- Notes et références
- Bibliographie générale
Les "promesses" des nanos en matière d'environnement
Les nanotechnologies sont souvent présentées comme une solution miracle à de nombreux problèmes d'environnement. En 2009, l'Union des Industries Chimiques (UIC) affirmait ainsi que "les nanomatériaux contribuent à réduire l'empreinte environnementale des activités : pneus à basse consommation, véhicules moins gourmands en énergie, habitations mieux isolées, téléphones cellulaires et ordinateurs plus autonomes et moins énergivores. (...) Les nanotechnologies interviennent de plus en plus dans la dépollution des sols et des eaux, le stockage du CO2 ou encore la production et le stockage d'énergies renouvelables. Au niveau industriel, elles permettent de fabriquer des produits manufacturés en consommant moins d'énergie et de matières premières"1.
Ainsi que le rapportait le Président de la Commission nationale du débat public en avril 2010 à l'issue du débat, ce discours est entretenu par des institutions de recherche française : "Qu'attend-on de positif des nanotechnologies ? Selon le CNRS et le CEA, un des objectifs est de contribuer au développement d'une société économe en ressources naturelles et en énergie, porteuse d'une forte exigence de préservation de la santé et de l'environnement"2.
-
Dépollution et remédiation des sols et des eaux par les nanos
De 2009 à 2012, le projet de recherche NanoFreezes a mobilisé les efforts de chercheurs du CNRS, de l'INERIS et du CEREGE, avec des résultats jugés "très satisfaisants".
Des chercheurs du Gisfi (Groupement d’intérêt scientifique sur les friches industrielles) ont réitéré en mars 2019 l'intérêt de la nanoremédiation. Les nanoparticules de fer sont les plus utilisées. Elles permettent de décontaminer des eaux et des sols chargés en composés chlorés, qui figurent parmi les polluants les plus répandus. Elles sont aussi efficaces pour le chrome, en réduisant l’une de ses formes particulièrement toxiques. Elles peuvent être injectées dans les nappes et mélangées à des sols, jusqu’à des profondeurs d’une douzaine de mètres, permettant dans certains cas de venir à bout de la quasi-totalité de la pollution.
Les auteurs soulignent cependant les incertitudes sur les risques, "les barrières à franchir d’ordre réglementaire et concernant l’acceptabilité de ces techniques par les entreprises, les clients, les élus et le public".
Les études continuent avec le Gisfi, la région Grand Est et quatre partenaires européens (Finlande, Grèce, Hongrie et Italie) dans un nouveau programme TANIA TreAting contamination through NanoremedIAtion (1 285 735 € pour des travaux de janvier 2017 à décembre 2021).
-
Autres "promesses" des nanomatériaux et/ou nanotechnologies en matière d'environnement
A travers notre veille sur le web, nous repérerons également de nombreuses annonces de développement d'applications nanos prétendument "vertes"3.
La vigilance est néanmoins de mise : outre qu'il existe beaucoup d'incertitudes sur les risques associés à ces développements (voir plus bas), certains s'interrogent sur la réalité et l'empreinte environnementale de ces promesses.
-
Quelle réalité ?
-
Quel bilan écologique ?
Avec le BEE et l'IPEN4, ils soulignent également que les promesses environnementales associées aux nanos ne concernent souvent que l'utilisation ou l'exploitation des produits auxquels elles sont associées et ignorent l'empreinte environnementale des autres étapes du cycle de vie des produits - élaboration, fabrication, utilisation, recyclage ou élimination - lors desquelles l'environnement peut être déterioré.
Par exemple les recherches, l'extraction des matières premières, la fabrication et le traitement en fin de vie de certains nanomatériaux requièrent des installations et équipements plus sophistiqués que les procédés classiques, et également plus d'énergie, plus d'adjuvants (notamment d'eau) et parfois plus de solvants néfastes pour l'environnement6.
Les rejets de gaz à effet de serre générés par la production de certains nanomatériaux, le nanoargent notamment, peuvent être également plus importants7, or ils sont en cause dans le réchauffement climatique et l'épuisement de la couche d'ozone.
En outre, même pendant la seule phase de leur utilisation, certains produits présentent un faible rendement de production, à cause d'un coût énergétique élevé pour une durée de vie limitée (particulièrement tous les gadgets électroniques, smartphones en première ligne, utilisant micro et nano-électronique qui ne dépassent guère quelques années).
La production high-tech de nanomatériaux à base de carbone, tels que les fullerènes, nanotubes de carbone et nanofibres de carbone, est aujourd'hui extrêmement énergivore ; les gains d'énergie potentiellement liés à certaines de leurs utilisations - notamment, pour les véhicules, les économies de carburant liées au gain de poids qu'ils permettent d'obtenir - sont loin de compenser les coûts énergétiques liés à leur production. L'impact du cycle de vie des nanofibres de carbone pourrait être cent fois supérieur à celui des matériaux auxquels on les substitue (aluminium, acier ou polypropylène) dans l'aéronautique ou l'automobile par exemple8.
La facture énergétique dépend évidemment des quantités de nanomatériaux produites : lorsque de très petites quantités sont utilisées, par exemple dans le cas des nanotubes de carbone pour produire des films plastiques spéciaux, il peut y avoir un gain d'énergie9. Mais l'autre question qui émerge alors concerne les risques que peuvent poser ces nanotubes pour l'environnement. Ce qui nous amène à la question suivante...
Des risques pour l'environnement de plus en plus documentés mais encore insuffisamment cernés
-
Des données parcellaires font état d'effets potentiels préoccupants sur la faune et la flore
A forte concentration, des effets de nanotubes de carbone ont été constatés par exemple11 :
- sur des micro-organismes : effets sur la croissance et la viabilité de protozoaires et autres micro-organismes,
- sur des végétaux : diminution de la viabilité cellulaire ou de la quantité de chlorophylle de végétaux, impact (parfois positif, parfois négatif) sur la germination des graines et la croissance racinaire
- sur des organismes aquatiques : diminution du taux de fertilisation chez des petits crustacés, malformations, retards à l'éclosion voire augmentation du taux de mortalité des embryons du poisson zèbre
- sur des organismes terrestres : réduction de la mobilité voire mort de drosophiles, diminution du taux de reproduction de vers de terre.
Plus récemment, des chercheurs ont mis en évidence un lien entre l'incinération de thermoplastiques contenant des nanotubes de carbone et l'augmentation des émissions et de la toxicité des hydrocarbures aromatiques polycycliques (HAP)12.
Et on commence à voir apparaître des résultats qui mettent en évidence des effets néfastes du nanoargent et de nanoparticules de dioxyde de titane sur des plantes et micro-organismes observés à des doses "réalistes"13.
La dissémination des nanoparticules manufacturées de dioxyde de titane peut être source de toxicité pour les environnements terrestres et aquatiques14.
Les nanoparticules contenues dans les crèmes solaires sont relarguées dans les eaux de baignade (de l'ordre de 4 kg de nanoparticules de dioxyde de titane par jour sur une plage espagnole), et aboutir à une augmentation de la concentration en peroxyde d'hydrogène, une molécule au potentiel toxique, notamment pour le phytoplancton qui constitue la nourriture de base des animaux marins15, ce qui peut donc avoir des conséquences sur toute la chaîne alimentaire !
En 2020, des travaux menés par des chercheurs français et espagnols ont montré que des nanoparticules d'oxyde de zinc sont absorbées par les roseaux, avec différents effets toxiques à la clé (réduction de leurs croissance, teneur en chlorophylle, efficacité photosynthétique et transpiration)16.
-
Des risques aussi mobiles que les nanomatériaux
On sait que des nanomatériaux ou résidus de nanomatériaux peuvent pénétrer et s'accumuler dans différentes espèces bactériennes, végétales, animales, terrestres et ou aquatiques, être transmis à la génération suivante, et remonter la chaîne alimentaire17.
Mais ces données sont encore très parcellaires ; malgré le développement des recherches à ce sujet18, les incertitudes relatives aux risques posés par les nanomatériaux pour l'environnement sont nombreuses.
-
Les conditions d'expérimentation sont souvent très éloignées de celles rencontrées dans la réalité
Les nanomatériaux considérés sont en effet souvent synthétisés en laboratoire et donc différents des nanomatériaux et résidus de dégradation des nanomatériaux auxquels sont réellement exposés les écosystèmes et les populations humaines. Pour l'heure, les scientifiques ont en effet une connaissance très limitée des types de nanomatériaux qui sont incorporés dans les produits actuellement sur le marché, et a fortiori des résidus de dégradation des nanomatériaux relargués dans l'environnement tout au long du "cycle de vie" de ces produits ; ils ignorent également beaucoup de choses sur la mobilité et les transformations subies par ces derniers dans l'environnement : là encore de nombreux paramètres entrent en ligne de compte, comme le degré d'acidité ou de salinité19 de l'eau par exemple.
Les concentrations de nanomatériaux testés sont en outre plus importantes que celles estimées dans l'environnement (à cause des limites des appareils de détection et de mesure utilisés en laboratoire). Toutefois on ne peut écarter l'hypothèse que les effets constatés (ou d'autres) sur les écosystèmes pourraient également intervenir à des concentrations plus faibles ; on vient en outre d'avoir la preuve scientifique que certains nanomatériaux (de silice notamment) sont plus génotoxiques à faibles doses qu'à fortes doses20. En outre ces fortes concentrations permettent de simuler des situations de contamination aiguë et ponctuelle (par exemple un déversement accidentel sur un site de production, ou encore en cours de transport).
La situation s'améliore cependant (au niveau méthodologique s'entend), avec de nouvelles méthodes d'analyses pour étudier les effets de nanoparticules sur les écosystèmes21 - par exemple en utilisant des "mésocosmes" : d'énormes aquariums reproduisant un mini éco-système dans lesquels est étudié à différents dosages le comportement des nanoparticules en contact avec des plantes, des poissons, du sol et de l'eau.
Les effets néfastes du nanoargent sur des plantes et micro-organismes mentionnés plus haut ont également été observés dans des conditions expérimentales "réalistes"13.
-
L'évaluation des risques se heurte à la complexité due à la multitude de paramètres à prendre en compte
- - d'une part la toxicité et l'écotoxicité des nanoparticules varient selon leurs caractéristiques physico-chimiques (dimension, forme, structure, état de charge, degré d'agglomération, composition, solubilité, etc.) qui varient elles-mêmes selon les conditions dans lesquelles les nanoparticules sont synthétisées, stockées, éventuellement enrobées, intégrées dans un produit puis relarguées dans l'environnement.
- - d'autre part, il faut également prendre en compte ce avec quoi les nanomatériaux considérés - ou leurs résidus - vont entrer en contact : êtres vivants végétaux, animaux, micro-organismes, et autres substances chimiques.
-
Les incertitudes donnent lieu à des divergences d'interprétation
Quand certains minimisent les risques en arguant du fait que les expériences ont été réalisées sur la base d'un "scénario du pire" (pour "worst case scenario" en anglais, impliquant par exemple des nanoparticules utilisées sous forme dispersée et à doses très fortes), d'autres soulignent a contrario que les conclusions amènent à tirer la sonnette d'alarme.
-
Les nanomatériaux peuvent accroître la dissémination d'autres polluants
-
Des risques accrus par les interactions des nanomatériaux entre eux ou avec d'autres polluants
-
Quelles conséquences de la dissémination des nanomatériaux bactéricides ?
Pire, les nanomatériaux utilisés pour dépolluer les sols ou les eaux26 pourraient entraîner eux-mêmes des pollutions importantes des écosystèmes au point que de nombreux acteurs insistent sur la nécessité d'interdire l'utilisation de nanoparticules pour dépolluer des sols ou de l'eau jusqu'à ce que des recherches démontrent que les bénéfices sont supérieurs aux risques27.
Les nombreuses incertitudes scientifiques qui demeurent laissent le champ libre à des différences d'appréciation des risques par les scientifiques voire de vraies controverses. Outre les problèmes qu'il pourrait poser dans les stations d'épuration, le nanoargent par exemple est pointé du doigt par certains experts qui le soupçonnent d'accroître le risque d'émergence de bactéries multirésistantes aux antibiotiques, ce que d'autres contestent28...
Comment appliquer le principe de précaution ?
Devant le peu de certitudes et de garanties sur l'innocuité des nanomatériaux pour l'environnement, s'impose le principe de précaution, inscrit dans la Constitution depuis 2005 : "Lorsque la réalisation d'un dommage, bien qu'incertaine en l'état des connaissances scientifiques, pourrait affecter de manière grave et irréversible l'environnement, les autorités publiques veilleront, par application du principe de précaution, et dans leurs domaines d'attribution, à la mise en oeuvre de procédures d'évaluation des risques et à l'adoption de mesures provisoires et proportionnées afin de parer à la réalisation du dommage".
Comment l'appliquer au cas des nanomatériaux pour lesquels demeurent de nombreux "verrous scientifiques" qui empêchent à ce jour une connaissance précise des risques encourus ?
Voici quelques-unes des pistes de solutions - parfois complémentaires, parfois exclusives les unes des autres - proposées par différents acteurs lors du débat public national de 2009-2010 et depuis :
-
Mener des études supplémentaires ? Lesquelles et à quel prix ? Financées par le contribuable et/ou les industriels ?
-
Limiter la commercialisation / les utilisations des nanomatériaux ?
Des chercheurs ont estimé qu'entre 63 et 91% des quelques 300 000 tonnes de nanomatériaux manufacturés produits dans le monde en 2010 ont fini dans des décharges, le reste étant relargué dans les sols (8 à 28%), l'eau (de 0,4 à 7%), ou l'atmosphère (0,1-1,5 %)29.
Certains demandent de rendre obligatoires les évaluations avant la commercialisation de nanomatériaux, et d'interdire ces derniers lorsque les résultats de ces évaluations suggèrent qu'ils pourraient être nocifs pour l'environnement. On retombe alors sur les questions mentionnées plus haut concernant la fiabilité, le calendrier et le financement de ces études.
-
Développer l'éco-conception des nanomatériaux ?
-
Contrôler les sources industrielles d'émissions de nanomatériaux ?
Au niveau européen, l'AFNOR a bien annoncé fin 2011 le lancement de travaux par le comité technique européen dédié aux nanotechnologies, le CEN/TC 352 mais nous n'avons pas d'information sur la norme "nanoresponsable" qui devrait en découler.
De l'avis d'un nombre croissant d'associations et d'experts scientifiques30, il est pourtant urgent d'agir. Et même si les instruments et méthodes pour détecter, mesurer, suivre et contrôler les nanomatériaux dans l'environnement sont encore à améliorer, il est d'ores et déjà techniquement possible de prélever et de conserver des échantillons pour les analyser quand ces instruments et méthodes seront au point31. Une démarche essentielle à mettre en place au plus vite.
-
Géolocaliser les relargages de nanomatériaux afin de cibler les zones les plus à risques
Des initiatives concrètes ont-elles été mises en place en ce sens ? Pas à notre connaissance.
La question environnementale, porte d'entrée d'une approche plus globale ?
Le physicien Richard Jones, Pro-Vice Chancelier à la Recherche et l'Innovation de l'Université de Sheffield (Royaume-Uni), interpellait en 2009 la communauté scientifique en insistant sur le fait que les enjeux environnementaux soulevés par les nanos dépassent le simple domaine de la toxicologie et de la technique, et nous confrontent à des questions plus globales : qui contrôle ces technologies, qui en profite ? selon quelle gouvernance ? 32. Du fait des incertitudes relatives à l'efficacité et à la potentielle gravité des effets environnementaux causés tout au long du cycle de vie des nanomatériaux, il s'agit de considérer les questions de leur réversibilité et de notre capacité à remédier aux problèmes qu'ils pourraient engendrer. En matière de réversibilité, ce ne sont pas uniquement des considérations techniques qui doivent entrer en ligne de compte souligne toujours Richard Jones : notre expérience avec d'autres technologies montre que les sociétés, une fois engagées dans une voie spécifique, peuvent avoir de grandes difficultés à faire marche arrière, non seulement pour des raisons techniques, mais aussi pour des raisons économiques ou socio-politiques.
La question de l'utilité (ou de la futilité) de l'usage des différents nanomatériaux a été posée lors du débat public national : y a-t-il un réel progrès pour l'homme ? La réponse peut varier en fonction des valeurs et des cultures. En France, beaucoup d'associations considèrent que "l'urgence publique est d'investir d'abord dans la réduction des pollutions, la prévention des cancers, la sobriété énergétique, l'accès à l'eau et à la nourriture avant de développer, sans véritable instance de contrôle ou d'éthique, les nanoproduits", ainsi que le rapportait le Président de la CNDP à l'issue du débat public national sur les nanotechnologies en avril 20107.
Se pose également la question de l'autonomie ou de la dépendance à une technologie complexe : quelles solutions alternatives existent pour l'effet attendu ? Quels moyens sont consacrés à les améliorer ?
En définitive, c'est le fonctionnement de notre démocratie qui est ici en jeu : qui décide quoi à quel moment du cycle de vie des innovations ? Quels acteurs sont concernés à chaque étape du cycle ? Ont-ils pu exprimer un avis et en est-t-il tenu compte au moment où un vrai choix est encore possible, comme le requiert la convention d'Aarhus ? Avec quelle éthique ?
Annexe : Les acteurs mobilisés sur la question
Différentes organisations ont pris position sur les questions environnementales soulevées par les nanotechnologies et nanomatériaux, notamment :
- du côté des associations environnementales :
- en France : France Nature Environnement, le WWF , les Amis de la Terre, ...
- à l'étranger : le Bureau Européen de l'Environnement (BEE), ETC Group, le Center for International Environmental Law, ICTA, Les Amis de la Terre International, Natural Resources Defense Council (NRDC), Clean Production Action, The Silicon Valley Toxics Coalition (SVTC), ...
- du côté des pouvoirs publics :
- en France :
- l'ANSES, qui a publié en 2010 le rapport Évaluation des risques liés aux nanomatériaux pour la population générale et pour l'environnement, et en 2011 le rapport Toxicité et écotoxicité des nanotubes de carbone, mis à jour en novembre 2012 dans le document Note d'actualité, État de l'art 2011-2012
- les ministères qui ont contribué au chapitre sur les "Risques pour la santé et l'environnement" pour le débat public national sur les nanotechnologies de 2009-2010.
- les agences environnementales comme l'EPA aux Etats-Unis, la DEPA au Danemark, etc.
- en France :
- du côté des laboratoires de recherche :
- les équipes de recherche françaises mobilisées sur la question sont pour la plupart listées sur le site du Groupement de recherche international iCEINT qui inclue également des équipes américaines du consortium CEINT
- les principaux laboratoires européens peuvent être identifiés à partir de la liste des projets européens en matière de sécurité environnementale des nanomatériaux réalisée en mai 2012 par l'Institute of Technology Assessment de l'Académie des Sciences autrichiennes, ou le document plus détaillé "Compendium of Projects in the European NanoSafety Cluster" publié en février 2012.
Pour aller plus loin
VOIR AUSSI :
- Sur notre site veillenanos.fr :
- Bibliographie générale "Nanomatériaux et environnement"
- Quel relargage des nanomatériaux dans l'environnement ?
- Quels devenir et comportement des nanomatériaux manufacturés dans l'environnement ?
- Prendre en compte l'ensemble du cycle de vie des nanomatériaux et des produits qui en contiennent
- Nanos et plastiques
- Détecter et mesurer les nanomatériaux ?
- Pourquoi tant d'incertitudes sur les risques associés aux nanomatériaux ?
- Comment financer les études de risques associés aux nanomatériaux?
- Nanos et stations d'épuration
- Les nanos dans le Plan "Mon Environnement, Ma santé" (PNSE 4)
- Ailleurs sur le web :
- Gestion des déchets et des effluents contenant des nanomatériaux. Devenir et impact dans les filières de traitement et valorisation - Synthèse , RECORD, 2019
- Les nanoparticules dans l'environnement, Julien Gigault (CNRS), Espace des sciences (Rennes), vidéo, 2 mai 2017
- Comment les nanotechnologies contribuent-elles à la transition énergétique ?, Forum NanoResp, 25 novembre 2015
Notes et références
1 - Cahier d'acteur pour le débat public national, Union des Industries Chimiques (UIC), oct. 2009
2 - Bilan du débat public sur le développement et la régulation des nanotechnologies, CNDP, avril 2010
3 - Voir par exemple :
- Les nanomatériaux permettent un dispositif réversible de chauffage et de refroidissement, Enerzine, 9 décembre 2020
- Les super pouvoirs des nano-matériaux, Transition et Energies, 28 janvier 2020
- Les nanotechnologies aussi peuvent se mettre au vert, Techniques de l'ingénieur, 10 octobre 2018
- Une meilleure production solaire de dihydrogène grâce aux nanoparticules de nickel, CNRS, 1er août 2018
- Panneaux solaires : des cellules photovoltaïques plus efficaces grâce à des nanoparticules reverbérantes dopées aux colorants organiques, Futura Sciences, 27 avril 2018
- Des capteurs de lumière moins chers, moins toxiques et recyclables pour la production d'hydrogène, CNRS, 10 avril 2018
- Nanomaterials Hold Promise for Producing Hydrogen from Water, University of Houston, 21 mars 2018
- La recherche sur les nanofils pourrait annoncer une nouvelle génération d'appareils solaires portables, Cordis, 21 février 2018
- "Changer les matériaux permettra de réduire les émissions de gaz de serre", Anatoly Chubais (Rusnano), Les Echos, décembre 2015
- Comment les nanotechnologies contribuent-elles à la transition énergétique ?, Forum NanoResp, novembre 2015
- Nanomaterials for Environmental Protection, Kharisov BI et al., John Wiley & Sons, août 2014
- Nouveau nanomatériaux dans le domaine de l'énergie durable, Munteanu LI et al., UMPC, avril 2014
- la synthèse réalisée par Bulletins électroniques en décembre 2011 : Energie & Environnement - Les nanosciences au coeur des technologies propres
- la synthèse en anglais réalisée en 2012 par l'Institute of Technology Assessment de l'Académie des Sciences autrichiennes : Nanotechnology and the environment - Potential benefits and sustainability effects.
4 - Nanotechnologie et environnement : un décalage entre les discours et la réalité, Bureau européen de l'environnement (BEE) et le Réseau international pour l'élimination des Polluants organiques persistants (IPEN), 2009 ; Nanomatériaux : Préoccupations sur la Santé et l'Environnement, BEE, 2009
5 - Nanotechnology, climate and energy: over-heated promises and hot air?, Les Amis de la Terre, novembre 2010 (voir ici pour un résumé en français : Nanotechnologies, climat et énergie)
6 - Dans un scénario de fonctionnement à long terme, l'évaluation du cycle de vie de deux processus solaires de purification de l'eau a par exemple montré un impact sur l'environnement nettement plus élevé pour le processus photocatalytique à base de nano-TiO2 par rapport à l'approche conventionnelle, du fait d'une forte consommation des ressources dans la production du dioxyde de titane à l'échelle nanométrique (Untersuchungen des Einsatzes von Nanomaterialien im Umweltschutz, Martens, Sonja, et al. (Golder Associates Gmbh), 2010, solicited by: Umweltbundesamt, no. 34/2010, June 2010, Dessau-Roßlau: Umweltbundesamt).
7 - Prospective environmental life cycle of nanosilver Tshirts, Walser Tobias et al., ES&T, 2011, 45(10) : 4570-4578
8 - Voir par exemple :
- Minimum Energy Requirements for the Manufacturing of Carbon Nanotubes, Gutowski, Timothy G., et al., 2010, IEEE, International Symposium on Sustainable Systems and Technologies,16-19 mai 2010, Washington D.C.
- Carbon Nanofiber Polymer Composites: Evaluation of Life Cycle Energy Use, Khanna, Vikas/Bakshi, Bhavik R., 2009, Environmental Science & Technology, 43(6), 2078-2084.
- Material and Energy Intensity of Fullerene Production, Anctil, Annick, et al., 2011, Environmental Science & Technology, 45(6), 2353-2359.
9 - Entlastungseffekte für die Umwelt durch nanotechnische Verfahren und Produkte, Steinfeldt, Michael/Von Gleich, Arnim (Institut für ökologische Wirtschaftsforschung gGmbH FB Umweltökonomie und -politik), 2010, solicited by Umweltbundesamt, no. 33/210, June 2010, Dessau-Roßlau: Umweltbundesamt
10 - Cf. Bibliographie Nanomatériaux et environnement, le paragraphe de la fiche consacrée aux risques des nanoparticules de dioxyde de titane pour l'environnement ou encore notre fiche sur les risques associés aux nanoparticules d'argent.
11 - Voir le rapport Toxicité et écotoxicité des nanotubes de carbone, ANSES, février 2011 (mis à jour en novembre 2012 dans le document Note d'actualité, État de l'art 2011-2012). Voir également notamment Carbon nanotubes: Impacts and behaviour in the terrestrial ecosystem - A review, Liné C et al., Carbon, 123 ; 767-785, juillet 2017
12 - Cf. Incinerating nano-enabled thermoplastics linked to increased PAH emissions and toxicity, Science for Environment policy, European Commission DG Environment News Alert Service, 508, 24 mai 2018
13 - Voir par exemple :
- Andreï J et al., Silver nanoparticles impact the functional role of Gammarus roeseli (Crustacea Amphipoda), Environmental Pollution, 208, 608-618, janvier 2016
- Des effets négatifs de nano TiO2 ont été observés sur la vie microbienne des sols limono-argileux à forte teneur en matière organique (notamment une altération de la nitrification), même pour des concentrations extrêmement faibles de nano TiO2 : cf. Dynamique, réactivité et écotoxicité des nanoparticules d'oxydes métalliques dans les sols : impact sur les fonctions et la diversité des communautés microbiennes, thèse de Marie Simonin (Ecologie Microbienne / UMR CNRS 5557 Université Claude Bernard - Lyon 1), soutenue en octobre 2015 :
- Silver Nanoparticles May Adversely Affect Environment, Communiqué de presse, Duke University, 27 février 2013 ; Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario, Plos One, février 2013
14 - Cf. Risques environnementaux associés aux nanoparticules de dioxyde de titane (TiO₂)
15 - Cf. http://veillenanos.fr/wakka.php?wiki=DevenirNanoEau#Baignade
16 - Cf. Stable Zn isotopes reveal the uptake and toxicity of zinc oxide engineered nanomaterials in Phragmites australis, BioRxiv, Caldelas C et al., 2020
17 - Cf. http://veillenanos.fr/wakka.php?wiki=DevenirNanoEnvironnement#mobilité
18 - Voir le document plus détaillé et plus récent Compendium of Projects in the European NanoSafety Cluster, NanoSafety Cluster, juin 2015
Citons notamment le projet européen de recherche NanoSolutions (2013-2017), qui cherche à identifier les caractéristiques des nanomatériaux manufacturés qui déterminent leur potentiel de risque biologique. Il vise à développer un modèle de classification de sécurité pour ces nanomatériaux, basé sur une compréhension de leurs interactions avec des organismes vivants.
19 - Cf. par exemple : The influence of salinity on the fate and behavior of silver standardized nanomaterial and toxicity effects in the estuarine bivalve Scrobicularia plana, Bertrand, C et al. , Environ Toxicol Chem., 2016
20 - Cf. Résultats du programme européen Nanogenotox : génotoxicité des nanomatériaux. Plus généralement, on commence à mieux comprendre l'effet des faibles doses et à s'apercevoir que ces effets peuvent être tout aussi délétères que des doses importantes ou avoir des effets antagonistes en fonction des doses. Les effets-doses viennent complexifier considérablement les recherches en toxicologie. Voir par exemple Le problème sanitaire des faibles doses, Elizabeth Grossman, juillet 2012 ; La seconde mort de l'alchimiste Paracelse, Stéphane Foucart, 11 avril 2013
21 - Voir par exemple :
- Contribution of mesocosm testing to a single-step and exposure-driven environmental risk assessment of engineered nanomaterials, Auffan M et al., Nanoimpact, 13 : 66-69, 2019
- Clarification of methodical questions regarding the investigation of nanomaterials in the environment, UBA, décembre 2017
- Ecotoxicologie des nanomatériaux : nouvelles approches analytiques, Camille Larue, Bulletin de veille scientifique (BVS), Anses, septembre 2015
- Le laboratoire d'Ecologie Microbienne de l'université Lyon 1 a mis en place des études sur la Dynamique, réactivité et écotoxicité des nanoparticules d'oxydes métalliques dans les sols : impact sur les fonctions et la diversité des communautés microbiennes (2015).
- Le projet MESONNET du CEREGE, initié en 2012, a contribué ainsi à étudier les conséquences potentielles des nanoparticules sur les écosystèmes en utilisant des "mésocosmes".
22 - Voir par exemple :
- Environmental Risk Assessment of Nanomaterials in the light of new obligations under the REACH regulation ‐ Which challenges remain and how to approach them?, Integrated Environmental Assessment and Management, Schwirn K et al., mars 2020 Experts call for updated guidance on nanomaterial risk assessment, Chemical Watch, 26 mars 2020
- Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets, Geitner NK et al., Environ. Sci.: Nano, 7, 13-36, 2020
23 - Voir par exemple :
- Fate of single walled carbon nanotubes in wetland ecosystems, Schierz A et al., Environ. Sci.: Nano, 2014 (et le communiqué de presse associé : Nanoparticles accumulate quickly in wetlands: Aquatic food chains might be harmed by molecules 'piggybacking' on carbon nanoparticles, Science Daily, 1er octobre 2014
- Carbon nanotubes as molecular transporters for walled plant cells. Liu Q, Chen B, Wang Q, et al. in Nano Lett., 9(3): 1007-10, 2009
- Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60, Baun, A., et al., in Aquatic Toxicology, 86: 379-387, 2008
- Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles, Zhang et al., Chemosphere 67(1):160-6, 2007
24 - Cf. http://veillenanos.fr/wakka.php?wiki=EffetsNanoSante#EffetCocktail
25 - Voir notre page dédiée "Nano et Stations d'épuration" et Risques associés au nanoargent, veillenanos.fr
26 - Voir par exemple :
- Des nanoparticules de fer pour dépolluer les sols, The Conversation, 16 mars 2019
- La Carte Nanoremédiation réalisée par le Project on Emerging Nanotechnologies présente une cartographie des sites où des nanos sont déjà utilisées à des fins de remédiation (dépollution).
27 - Citons notamment la Royal society et la Royal Academy of Engineering britanniques qui ont pris position sur ce sujet dès 2004 dans leur rapport Nanoscience and nanotechnologies: opportunities and uncertainties ; ou encore l'Agence française de sécurité sanitaire des aliments (Afssa), dans un rapport de 2008 intitulé Les nanoparticules manufacturées dans l'eau ; voir aussi l'appel lancé en 2010 aux USA par un groupe de scientifiques et d'associations contestant l'utilisation de nanoparticules pour lutter contre la marée noire dans le golfe du Mexique. Voir également Contaminated Site Remediation: Are Nanomaterials the Answer?, Project on Emerging Nanotechnologies et Environmental Protection Agency (USA), février 2010
28 - En décembre 2011, la Commission a donc mandaté le Comité scientifique des risques sanitaires émergents et nouveaux (SCENIHR) pour produire d'ici 2013 un avis scientifique sur les effets sanitaires et environnementaux du nanoargent et son rôle dans la résistance antimicrobienne.
29 - Global life cycle releases of engineered nanomaterials, Journal of Nanoparticle Research, Mai 2013.
30 - When enough is enough, J. Hansen & A. Baun, Nature Nanotechnology, 7, 409411 (2012)
31 - Voir Nanomatériaux : Une revue des définitions, des applications et des effets sur la santé. Comment implémenter un développement sûr, Eric Gaffet, Comptes Rendus Physique, Volume 12, numéro 7, pages 648-658, septembre 2011
32 - Richard Jones, 'It's not just about nanotoxicology', Nature Nanotechnology, vol 4, octobre 2009
Dossier initialement mis en ligne en septembre 2012
Les travaux du Réseau 31 (R 31) concernant les nanos
Les travaux du Réseau 31 (R 31) concernant les nanos
par MD - Dernière modification janvier 2014Cette fiche a vocation à être complétée et mise à jour avec l'aide des adhérents et veilleurs de l'Avicenn. Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr.
Sommaire :
- Objectifs
- Composition
- Les travaux "nano et santé" du R31
- Des efforts qui demandent à être confortés
- Pour aller plus loin
Objectifs
Le Réseau R31 mis en place en octobre 2010 et animé par l'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES) a pour objectif de renforcer les coopérations aux fins :
- d'évaluation des risques sanitaires dans le domaine de l'alimentation, de l'environnement, du travail, et de la santé
- de veille et d'alerte des pouvoirs publics en cas de risques pour la santé publique
- d'amélioration de la connaissance des risques sanitaires dans le domaine de compétence de l'ANSES
Composition
Le R31 regroupe 31 instituts ou organismes1 français de recherche et d'évaluation de risques environnementaux ou sanitaires.
Ce réseau implique des établissements très variés :
- des acteurs académiques, notamment des établissements de recherche et d'enseignement supérieur comme le CNRS, le CEA, l'INSERM, l'INRA, et des écoles vétérinaire ou d'agronomie,
- des établissements à caractère plus techniques, des EPIC, comme l'INERIS, le CSTB, le LNE
- des établissements plus spécifiquement dédiés aux questions de santé comme l'Agence nationale de sécurité du médicament (ANSM)
Les travaux "nano et santé" du R31
La thématique "santé et nanomatériaux" est l'un des quatre domaines d'intérêt2 sur lesquels se penche le réseau R31.
Lors d'une réunion du R31 qui a eu lieu le 23 octobre 2012, les membres du réseau ont commencé à dégager quelques pistes de travail communes et de collaborations possibles entre divers organismes sur ce sujet.
Mieux vaut tard que jamais : trouver des synergies entre les différents acteurs concernés par les risques associés aux nanomatériaux est indispensable à la construction d'une vigilance collective.
Ce réseau présente l'avantage de provoquer des échanges entre acteurs académiques et organismes travaillant sur le court terme pour apporter des réponses aux industriels ou aux pouvoirs publics, et de mêler des disciplines extrêmement variées.
Un point a été fait sur les problèmes à résoudre. Trois domaines ont été identifiés afin d'être collectivement examinés, sous forme de réunions plus spécialisées et techniques, associant éventuellement d'autres acteurs que les membres du R31 :
- la métrologie, afin de faire converger les outils et méthodes développées par exemple au LNE avec les besoins des biologistes qui souhaitent par exemple mesurer des nanoparticules dans le tube digestif : une réunion a eu lieu le 18 novembre 2013, pilotée par le LNE.
- la toxicologie en général, afin de clarifier ce que l'on veut mesurer en toxicologie : des acteurs académiques ainsi que des personnes, proches de l'AFNOR ou de l'OCDE, cherchent des réponses à très court terme et se demandent ce qu'il leur faut donner aux industriels pour la réalisations de tests : une réunion a eu lieu le 9 décembre 2013, co-pilotée par l'ANSES et l'INRA
- l'exposition des travailleurs, afin de préciser ce que l'on mesure et la manière de mesurer l'exposition d'un travailleur (domaines sur lesquels travaillent notamment l'INRS et de l'InVS)
Des efforts qui demandent à être confortés
Ces efforts demandent cependant à être confortés par une meilleure coordination nationale et la mise en place d'une vraie stratégie nationale de recherche, à articuler avec les préoccupations de la société civile et avec les besoins des entreprises et des autorités sanitaires et environnementales chargées de mieux évaluer et/ou mieux gérer ces risques. Car la difficulté d'évaluer, de pronostiquer, de gérer des risques reste énorme et plaide pour plus de responsabilité sociétale et environnementale de la part de chacune des parties prenantes (chercheurs, administrations, entreprises, élus, associations, médias, etc.). Le travail de veille et d'information que nous effectuons plus largement sur nos sites wikinanos.fr et veillenanos.fr entendent y contribuer.
Pour aller plus loin
LIRE AUSSI sur notre site :
- Les fiches concernant l'ANSES, le comité de dialogue "Nanomatériaux et Santé" de l'ANSES et le Groupe de travail pérenne "Nanomatériaux et santé" de l'ANSES
- Nos rubrique Risques, Santé et Acteurs.
AUTRES RESSOURCES :
- Nanomatériaux et santé - Comprendre où en est la recherche, Les cahiers de la recherche, ANSES, octobre 2015
- Le réseau des partenaires : Le "R31", anses.fr
NOTES et REFERENCES :
1 - Cf. la liste du réseau d'organismes du R31 sur le site de l'ANSES
2 - Les quatre thématiques sont : la veille prospective, l'antibiorésistance, la santé et les nanomatériaux, les dangers sanitaires et le cycle de l'eau.
Fiche initialement créée en mars 2013
Risques associés aux nanomatériaux et nanotechnologies
Risques associés aux nanomatériaux et nanotechnologies
- Toxicologie et/ou éco-toxicologie :
- Pourquoi tant d'incertitudes sur les risques associés aux nanomatériaux ?
- Caractéristiques physico-chimiques et toxicité des nanomatériaux
- Les plateformes sur les risques nano en France
- Risques associés aux nanotubes de carbone
- Risques associés aux nanoargents
- Risques associés au nano dioxyde de titane
- Risques associés aux nanosilices
- Risques associés aux nanoparticules d'or
- Risques associés aux nanoparticules d'oxyde de zinc
- Risques associés aux nanoparticules de cuivre et oxyde de cuivre
- Risques associés aux nano MBBT
- Risques associés au graphène
- Quels effets néfastes des nanomatériaux pour la santé ?
- Nano et Santé : Bibliographie
- Nano et Santé au travail : Bibliographie
- Le programme EpiNano, dispositif de surveillance épidémiologique des travailleurs potentiellement exposés aux nanomatériaux
- Quelles informations sur les nanomatériaux dans les fiches de données de sécurité (FDS) ?
- Alimentation : Risques pour la santé des nanos dans l'alimentation
- Environnement : Risques des nanos pour l'environnement
- Gouvernance :
- Nanos et Risques : Ne pas renouveler les erreurs du passé
- Comment financer les études de risques nano ?
- L'approche nano 'safe(r) by design' ?
- Prendre en compte l'ensemble du cycle de vie des nanomatériaux et des produits qui en contiennent
- Les assureurs réticents à assurer les risques des nanotechnologies et/ou nanomatériaux
- Les limites de l'analyse des risques nano
Risques associés aux nanoparticules de cuivre et oxyde de cuivre
Risques associés aux nanoparticules de cuivre et oxyde de cuivre
Par l'équipe Avicenn - Dernière modification décembre 2020Cette fiche a vocation à être complétée et mise à jour avec l'aide des adhérents et veilleurs d'Avicenn. Vous pouvez vous aussi contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr.
Des nanoparticules de cuivre et d'oxyde de cuivre sont utilisées pour leurs effets antibactérien et antifongique ; quid des risques pour l'environnement et pour la santé ?
- En français :
- Effets antibactériens des nanoparticules de cuivre, oxyde de cuivre et oxyde de fer, Myriam Talantikit, Institut de Génie biomédical, École polytechnique de Montréal, 2014
- En anglais :
- Preliminary Opinion on Copper (nano) and Colloidal Copper (nano), Comité scientifique pour la sécurité des consommateurs (CSSC / SCCS), octobre 2020
- ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health, Rajput V et al., Environmental Geochemistry and Health, 42 : 147–158, 2020
- Rainbow trout (Oncorhynchus mykiss) chemosensory detection of and reactions to copper nanoparticles and copper ions, Razmara P et al., Environmental Pollution, 260, mai 2020
- Copper Nanoparticles Mitigate the Growth, Immunity, and Oxidation Resistance in Common Carp (Cyprinus carpio), Dawoo M et al, Biological Trace Element Research, 5 février 2020
- Effects of copper oxide nanoparticles on the Chlorella algae in the presence of humic acid, Fathi P et al., SN Applied Sciences, 1 janvier 2020
- Copper nanoparticles induce zebrafish intestinal defects via endoplasmic reticulum and oxidative stress, Zhao G. et al., Royal society of chemistry, 28 novembre 2019
- Assessment of Cu and CuO nanoparticle ecological responses using laboratory small-scale microcosms, Fan Wu, Bryan J. Harper, Lauren E. Crandon, Stacey L. Harper, Royal society of chemistry, 20 novembre 2019
- Effects of Copper Oxide Nanoparticles (CuO-NPs) on Parturition Time, Survival Rate and Reproductive Success of Guppy Fish, Poecilia reticulata, Mohammad Forouhar Vajargah et al., Journal of Cluster Science, 7 septembre 2019
- Interaction of copper-based nanoparticles to soil, terrestrial, and aquatic systems: critical review of the state of the science and future perspectives, Rajput V et al., Reviews of Environmental Contamination and Toxicology, 252 : 51-96, 2019
Fiche initialement créée en mai 2020
Risques associés aux nanotubes de carbone
Risques associés aux nanotubes de carbone
Par l'équipe Avicenn - Dernier ajout janvier 2021Cette fiche a vocation à être complétée et mise à jour. Vous pouvez contribuer à l'améliorer en nous envoyant vos remarques à l'adresse redaction(at)veillenanos.fr.
En mai 2014, l'Agence française de sécurité sanitaire (ANSES) a préconisé un classement des nanotubes de carbone comme substances dangereuses afin que soient mises en place des mesures de restriction d'usage voire d'interdiction de l'utilisation de certaines applications grand public1.
En 2015, la Société pour l'étude, la protection et l'aménagement de la nature dans le Sud-Ouest (SEPANSO) a alerté sur les risques liés à la production de nanotubes de carbone par Arkema à Mont (Pyrénées-Atlantiques) en demandant l'arrêt des productions tant que l'innocuité des nanos n'est pas établie pour les salariés, les consommateurs et l'environnement2.
En novembre 2019, les nanotubes de carbone sont les premiers nanomatériaux à intégrer la SinList, liste de substances à remplacer d’urgence parce que trop dangereuses3.
Le même mois, l'agence européenne pour la santé et la sécurité au travail a attribué le Prix des bonnes pratiques "Lieux de travail sains" 2018-2019 à Atlas Copco Industrial Technique, une entreprise manufacturière suédoise qui a adopté une approche de précaution pour minimiser l’exposition des travailleurs aux nanotubes de carbone4.
En juillet 2020, l'ECHA a publié un rapport d'évaluation sur les nanotubes de carbone multi-parois (MWCNT), le graphite synthétique en forme de tube et enchevêtré, réalisé par l'Institut allemand pour la sécurité et la santé au travail (BAuA)5. Le rapport souligne que les informations requises au 1er janvier 2020 dans le cadre de REACH n'avaient pas encore été (suffisamment) remplies par les déclarants et que des mesures supplémentaires sont donc nécessaires, à commencer par un contrôle de conformité. Une fois que les données requises par REACH seront fournies par les entreprises, l'ECHA pourra décider si des informations supplémentaires sont nécessaires. L'ECHA presse les déclarants de mettre à jour leurs dossiers et/ou d'élaborer des propositions d'essais pour se conformer aux exigences de REACH.
En septembre 2020, l'agence américaine de protection de l'environnement (EPA) a publié une réglementation en matière de nouvelles utilisations importantes (SNUR) pour les nanotubes de carbone PMN P-15-54 libres (i.e non inclus dans une matrice)6, qui est entrée en vigueur le 16 novembre 2020. Toute personne désirant fabriquer, importer ou transformer, à des fins commerciales, ces nanotubes de carbone devra en aviser l’EPA au moins 90 jours avant, selon des modalités précisées ici.
En savoir plus
En français :
- Françoise Pons (Université de Strasbourg), Impact des caractéristiques physicochimiques sur l’effet inflammatoire et pro-allergisant respiratoires des nanoparticules manufacturées, présentation aux Rencontres scientifiques de l'Anses & de l'ADEME sur la qualité de l'air, 17 octobre 2019
- Flahaut E et al., Toxicité des nanotubes de carbone envers l'homme et l'environnement, Techniques de l'ingénieur, octobre 2018
- elektor, Les nanotubes de carbone à fibre longue sont cancérogènes, novembre 2017
- ANSES, Impacts des nanotubes de carbone sur la santé : relation structure effets inflammatoires, Hadj-Ziane-Zafour A., Bulletin de veille scientifique, n°32, octobre 2017
- CIRC, Monographie - Cancérogénicité des nanotubes de carbone, Vol.111, 2017
- Chakroun R, Influence sur les effets toxiques de l'exposition simultanée aux nanoparticules et aux métaux, Bulletin de veille scientifique n°30, ANSES, octobre 2016
- Dekali S, Nanotubes de carbone : nouvelles avancées sur les modèles d'exposition pour l'étude du danger sur la santé, Bulletin de veille scientifique n° 30, ANSES,octobre 2016
- Larue C, Où en est-on au sujet de l'écotoxicologie des nanotubes de carbone ?, Bulletin de veille scientifique n° 29, ANSES, septembre 2016
- CNRS, Nanoparticules de carbone : une meilleure évaluation de leur toxicité, 2 juin 2016
- Elgrabi D et al., Comment les nanotubes de carbone se dégradent-ils dans l'organisme humain ?, communiqué, Université Paris Diderot, 9 décembre 2015 (publication scientifique en anglais ici)
- Loïc Chauveau, À Paris, des nanotubes de carbone dans les poumons d'enfants asthmatiques, Sciences & Avenir, 23 octobre 2015
- "Nanotubes d'imogolite : un nouveau matériau modèle en nanotoxicologie ?" par Rose J et al., in Dossier du participant préparé pour la Restitution du Programme national de recherche environnement santé travail (PNREST), octobre 2015
- C. Endes et al., Des fibres de coton à la place de nanotubes de carbone, PNR 64, mai 2015
- La République des Pyrénées, Mont : les nanotubes de carbone dans le collimateur de la Sepanso, 25 février 2015
- Bourdiola F et al., Mesurer l'impact des nanotubes de carbone dans l'environnement, CNRS, janvier 2015
- Figarol A, Toxicité in vitro et propriétés physico-chimiques de nanotubes de carbone, thèse, Ecole nationale supérieure des Mines de Saint-Etienne, novembre 2014
- Flahaut E, Evaluation de l'impact environnement potentiel des nanotubes de carbone, Journées industrielles nanomatériaux, Armines, (vidéo), avril 2014
- Boudard D, Bio toxicité in vitro des Nanotubes de Carbone, Journées industrielles nanomatériaux, Armines, (vidéo), avril 2014
- AtouSanté, Toxicologie des nanotubes - Analogie nanotubes de carbone et amiante - Valeur limite d'exposition au poste de travail, mars 2014
- Techniques de l'Ingénieur, Atténuation de la toxicité des nanotubes de carbone grâce à la fonctionnalisation chimique, 10 janvier 2014
- ANSES, Avis relatif à "l'évaluation des risques liés au GRAPHISTRENGTH C100 réalisée dans le cadre du programme Genesis", 28 novembre 2013 (mis en ligne le 9 janvier 2014)
- Veillenanos, Effets des nanotubes de carbone sur la santé - Eviter de reproduire les erreurs de l'amiante, 26 nov. 2013
- Mouchet F. et al., Nanotubes de carbone : quels risques pour l'environnement ?, Biofutur, 32/347, 29-33, octobre 2013 : des travaux ont mis en évidence des effets de toxicité aiguë (mortalité, mobilité réduite) et chronique (inhibition de croissance), essentiellement liés à leur ingestion par les organismes exposés, mais à des concentrations qualifiées de non représentatives d'un point de vue environnemental (à partir de 10 mg/L).
- CNRS, Nanotubes de carbone longs, risques similaires à l'amiante ?, 15 janvier 2013
- ANSES, Toxicité et écotoxicité des nanotubes de carbone - Note d'actualité, État de l'art 2011-2012, novembre 2012
- ANSES, Avis sur "l'évaluation des risques liés au GRAPHISTRENGTH C100 réalisée dans le cadre du programme Génésis", (nanotubes de carbone), avril 2012
- Bulletins Electroniques Suède, Une étude suédoise nous avertit des risques que les nanotubes de carbone peuvent avoir sur la santé, 7 mars 2011
- HCSP, Avis relatif à la sécurité des travailleurs lors de l'exposition aux nanotubes de carbone, Saisine du 16 juin 2008 du directeur général de la Santé, 7 janvier 2009.
- INRS, Les nanotubes de carbone : quels risques, quelle prévention ?, Note documentaire, 2008
En anglais :
- Understanding the Broad Class of Carbon Nanotubes and Nanofibers (CNT/F) Used or Produced in U.S. Facilities, Erdely A et al., NIOSH Science blog, 5 janvier 2021
- Significant New Use Rules on Certain Chemical Substances (20-1.5e) - § 721.11467Carbon nanotubes (generic), EPA, 17 septembre 2020
- Science for Environment policy, Incinerating nano-enabled thermoplastics linked to increased PAH emissions and toxicity, European Commission DG Environment News Alert Service, 508, 24 mai 2018
- Laux P et al., Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems, (Critical Review), Environ. Sci.: Nano, 5, 48-63, 2018
- Liné C, Carbon nanotubes: Impacts and behaviour in the terrestrial ecosystem - A review, Carbon, 123 : 767-785, octobre 2017
- Chernova T et al., Long-fiber carbon nanotubes replicate asbestos-induced mesothelioma with disruption of the tumor suppressor gene, Current Biology, 27( 21), 3302–3314, novembre 2017 (voir le résumé en français : Les nanotubes de carbone à fibre longue sont cancérogènes, elektor, novembre 2017)
- Mottier A et al., Environmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota Environmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota, Current Opinion in Biotechnology, 46, 1-6, août 2017
- Carbon nanotubes: Impacts and behaviour in the terrestrial ecosystem - A review, Liné C et al., Carbon, 123 ; 767-785, juillet 2017
- IARC, IARC Monographs - Some Nanomaterials and Some Fibres, Volume 111, 2017
- OCDE, Single-Walled Carbon Nanotubes, juillet 2016
- Mottier A et al., Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological Assessment, Nano Letters, 16 (6) : 3514-3518, 2016
- Polimeni M et al., Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells..., Particle and Fibre Toxicology, 13 :27, juin 2016
- Zeng W et al., The influence of inhaled multi-walled carbon nanotubes on the autonomic nervous system, PF&T, 13:8, 2016
- Elgrabli D et al., Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway, ACS Nano, 9 (10) : 10113-10124, 2015
- Schubauer-Berigan MK et al., Epidemiologic studies of U.S. workers handling carbon nanotubes: the interface between exposure and health, NIOSH (USA), diaporama présenté à l'atelier "Quantifying Exposure to Engineered Nanomaterials Workshop", juillet 2015
- Grosse Y et al, Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes, 15(13) : 1427-1428, décembre 2014
- Vasyl Harik, Carbon Nanotubes and Safety, in Trends in Nanoscale Mechanics, août 2014, pp 197-211
- Powers C M et al. Sparking Connections: Toward Better Linkages Between Research and Human Health Policy - An Example with Multiwalled Carbon Nanotubes, Toxicological Sciences, 141(1) : 6-17, juin 2014
- Schierz A et al., Fate of single walled carbon nanotubes in wetland ecosystems, Environ. Sci.: Nano, 2014
- Czarny B et al., Carbon Nanotube Translocation to Distant Organs after Pulmonary Exposure: Insights from in Situ 14C-Radiolabeling and Tissue Radioimaging, ACS Nano, 8 (6) : 5715-5724, mai 2014
- IARC, IARC Advisory Group Recommends Multi-Walled Carbon Nanotubes as High Priority, 14 mai 2014
- The Lowell Center for Sustainable Production, Precarious Promise: A Case Study of Engineered Carbon Nanotubes, University of Massachusetts Lowell, mars 2014
- Gernand JM et Casman EA, A Meta-Analysis of Carbon Nanotube Pulmonary Toxicity Studies -How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes, Risk Analysis, 34(3) : 583-597, mars 2014
- Siegrist KJ et al., Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses, Particle and Fibre Toxicology, 11:6, 2014
- Nymark P., et al., Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells, Particle and Fibre Toxicology, 11:4, 2014
- Sargent LM et al., Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes, Particle and Fibre Toxicology, janvier 2014, 11:3
- FIOH (Finlande), Evaluation of the health effects of carbon nanotubes, octobre 2013
- RISS (Japon), Guide to measuring airborne carbon nanotubes in workplaces, National Institute of Advanced Industrial Science and Technology (Japon), octobre 2013
- Mercer et al., Extrapulmonary transport of MWCNT following inhalation exposure, Particle and Fibre Toxicology, 10:38, août 2013
NB : NanoEHS, la base de données répertoriant les publications scientifiques sur les risques en nanotechnologies, mise à jour par the International Council on Nanotechnology (ICON) ne semble plus fonctionner (2016)
Lire aussi sur notre site :
- Notre rubrique Risques associés aux nanomatériaux et nanotechnologies, veillenanos.fr
- Nos fiches :
- nanotubes de carbone
- Pourquoi tant d'incertitudes sur les risques associés aux nanomatériaux ?
- Caractéristiques physico-chimiques et toxicité des nanomatériaux
- Effets des nanotubes de carbone sur la santé - Eviter de reproduire les erreurs de l'amiante, veillenanos.fr, novembre 2013
NOTES et REFERENCES
1 - Au vu des risques liés aux nanomatériaux, l'ANSES préconise un encadrement renforcé, veillenanos.fr, mai 2014
2 - Mont : les nanotubes de carbone dans le collimateur de la Sepanso, La République des Pyrénées, 25 février 2015 ; voir aussi ANSES, Avis relatif à "l'évaluation des risques liés au GRAPHISTRENGTH C100 réalisée dans le cadre du programme Genesis", 28 novembre 2013
3 - Cf. Avec sa SinList, l’ONG ChemSec alerte un public non expert sur les risques chimiques, Novethic, novembre 2019 et New chemicals on the SIN List challenge the global supply chain, ChemSec, novembre 2019
4 - Cf. Suède: protection des travailleurs contre les nanotubes de carbone potentiellement dangereux dans le secteur manufacturier, OSHA Europe, 2 novembre 2019
5 - Cf. SUBSTANCE EVALUATION CONCLUSION as required by REACH Article 48 and EVALUATION REPORT for Multi-walled Carbon Nanotubes (MWCNT), synthetic graphite in tubular shape and tangled, BAuA / ECHA, Juillet 2020
6 - Cf. Significant New Use Rules on Certain Chemical Substances (20-1.5e) - § 721.11467Carbon nanotubes (generic), EPA, 17 septembre 2020
Fiche initialement créée en décembre 2013