Please be aware that this is a machine translation from French to English. AVICENN is not responsible for incorrect or inaccurate translations but welcomes suggestions for reformulation.

VeilleNanos - Physicochemical characteristics and toxicity of nanomaterials

Physicochemical characteristics and toxicity of nanomaterials

image
News
+ Info sheets
Agenda

“Physicochemical characteristics” and toxicity of nanomaterials

By the AVICENN team – Last updated June 2022

At the nano scale, we can no longer consider that “it is the dose that makes the poison”. This sentence from the physician and alchemist Paracelsus, the “father” of toxicology, is very often invoked to evaluate the risks related to synthetic chemicals. Scientifically, it is now being questioned, especially in the specific case of nanomaterial toxicity, which is strongly influenced by the physicochemical characteristics of the nanomaterials considered.

Each of the parameters mentioned below affects the toxicity of nanomaterials and each of these is itself subject to variation during the life cycle of nanomaterials. Hence the complexity, for researchers, to evaluate the toxicity of nanomaterials.

– Their chemical composition:

  • This is the identity of the substance, for example “silver” or “titanium dioxide”.
  • One can extrapolate the knowledge one has about the substance to the macro state, whose known properties (and sometimes toxicity) can be increased tenfold due to surface reactivity.
  • New properties (or new toxicity) may also appear specifically at the nanoscale; they are much more difficult to predict, and often not enough is known about them.
  • However, nanomaterials of the same family cannot be considered as a “monosubstance”: within the same family, different substances can present different toxicity and genotoxicity1Results of the European Nanogenotox program on the genotoxicity of nanomaterials, presented in French at ANSES, during the ‘Restitution du programme national de recherche environnement santé travail’: Substances chimiques et nanoparticules: modèles pour l’étude des expositions et des effets sanitaires: Dossier du participant et Diaporama, November 2013. And “Toxicological assessment of nanomaterials needs to evolve, says European research project,” APM International, November 14, 2013. On the genotoxicity of nanomaterials, see also: Genotoxicity of Manufactured Nanomaterials: Report of the OECD expert meeting, OECD, December 2014.

– Their dimension (size and size distribution):

Their nanometric size allows nanomaterials to penetrate the cell and cause adverse effects2See for example Size determines how nanoparticles affect biological membranes, Dunning, H., Imperial College London, September 17, 2020 (press release) and Size dependency of gold nanoparticles interacting with model membranes, Contini, C et al, Nature Communications Chemistry, 130, 2020. Their size is not the only factor and the items below are also decisive.

– Their shape (or morphology):

There is a great diversity of nanoparticle shapes: nanotubes, nanowires, nanosheets, nanocubes, etc. It seems that the tubular, fibrous or multifaceted structures present a greater toxicity than the smooth structures (such as spheres), in connection with the surface reactivity3See for example: The influence of surface coatings of silver nanoparticles on the bioavailability and toxicity to elliptio complanata mussels Auclair J et al, Journal of Nanomaterials, 2019 : Silver nanoparticles harm mussels: high silver levels in freshwater mussels are linked to reduced survival time in air, weight loss during air exposure, and DNA damage.. The toxic action can also be more important on one of the facets, for example for nanomaterials of complex shape and nature (but again, this will depend on the type of nanomaterial).

– Their specific surface :

This is the surface area of a particle or a material in relation to its volume. It has an important role in explaining certain changes in the behavior of the same material (e.g. powdered sugar will melt more quickly in hot tea than a large lump of sugar).

– Their surface reactivity / surface chemistry (and if necessary, their outer cover: coating or encapsulation)

– Their state of charge

– Their degrees of agglomeration / aggregation:

– Their solubility (in water, biological fluids, …)

– Their crystallinity

– Their powderiness

Elsewhere on the web

– In French :

In English:

Any questions or comments? This information sheet compiled by AVICENN is intended to be completed and updated. Please feel free to contribute.

Upcoming Nano Agenda

5
Oct.
2025
NaMasTE thematic school (CNRS, Ile d’Oléron – France)
Ile d'Oléron
Training
  • Thematic school of the NaMasTE research group (Manufactured Nanomaterials, Toxicology, Ecotoxicology and Risks: towards controlled development)
  • Public: engineers, researchers (contract and permanent), PhD students, industrialists and members of associations working on nanomaterials.
  • The program includes the physical chemistry, biology and environmental sciences needed to understand the key aspects involved in the controlled development of nanomaterials.
    → Safer-by-design approaches, which integrate analysis of the production, characterization of properties, fate, and impacts (beneficial or harmful) of nanomaterials and products containing them throughout their life cycle
  • Dates: October 5 to 10, 2025
  • Organizers: CNRS
  • Website: https://namaste.sciencesconf.org
6
Oct.
2025
Characterizing and preventing risks related to manufactured nanomaterials and ultrafine particles (INRS, Vandœuvre-Lès-Nancy – France)
Nancy
Training
  • Training intended for occupational physicians, occupational risk prevention specialists (IPRP), company prevention specialists, prevention department staff from Carsat, Cramif and CGSS, institutional prevention specialists (Dreets, Dreal, MSA…).
  • Organizer: French National institute of research and security (INRS)
  • October 6 to 10, 2025
  • Website: www.inrs.fr/…/formation/…JA1030_2025
6
Oct.
2025
Scientific integrity, manipulation of scientific information, industry influence strategies and whistleblower protection (Université Paris Cité, Paris – France)
Paris
Conference
health
conflicts of interest
health
information
research
risks
science and society
  • 3pm – Conference by Irène Frachon on her fight to reveal the dangers of Mediator, the difficulties encountered by whistleblowers in the face of institutional and industrial pressure, and the importance of their role in defending public health.
  • 4pm – Round table on the manipulation of scientific information and the defense of whistleblowers moderated by Raphaël Lévy (professor of physics at Sorbonne Paris Nord University, specialist in nanoparticles and their uses in biology, coordinator of the ERC NanoBubbles project dedicated to research into the corrective mechanisms of science), with :
    • Maud Bernisson, post-doctoral fellow at LISIS (CNRS), member of the ERC NanoBubbles project, on the mechanisms of influence of pharmaceutical companies in the scientific field.
    • Marc Samama, professor, anesthesiologist, co-chairman of the Commission des blocs et plateaux techniques de la CME de l’AP-HP, past Editor-in-Chief of the European Journal of Anaesthesiology, director of the Office de l’Intégrité Scientifique de l’AP-HP.
    • Solène Lellinger, Senior Lecturer in the History and Philosophy of Health at Paris Cité University, specializing in the socio-history of medicines and their intersection with medical practices, and in particular the ways in which knowledge and information about medicines are produced.
    • Cécile Barrois de Sarigny, Deputy Ombudsman in charge of whistleblower protection.
  • With the support of the ERC Synergy NanoBubbles project
  • Website: https://u-paris.fr/sante/irene-frachon-a-paris-une-conference-et-une-table-ronde-sur-lintegrite-scientifique

Created in November 2013


Notes and references

Our monitoring, information and actions need you to continue !