Release, fate and transformation of nanos in the environment
Release, fate and transformation of nanos in the environment
By the AVICENN team – Last updated June 2022
Release of manufactured nanomaterials into the environment
Little data exists on the release of manufactured nanomaterials
The “release” of nanomaterials refers to the phenomenon whereby nanomaterials – or nanomaterial degradation residues – are released into the environment. The term “emissivity” is also sometimes used.
A distinction can be made between:
- natural nanoparticles found, for example, in erosion or volcanic eruption dust or in sea spray
- nanoparticles known as “incidental” because they are produced “involuntarily” by human activities, emanating from smoke (from wood combustion, industrial smoke, smoke from diesel engines, incinerators, toasters or ovens) or from the abrasion of non-nanometric raw materials
- manufactured nanomaterials purposely produced at the nanoscale by researchers and industry to exploit their specific properties.
There is currently very limited knowledge of the quantities and types of manufactured nanomaterials – or residues of these nanomaterials – that are released into the environment. These data are important to better understand the exposure to nanomaterials of ecosystems and populations (especially workers), in order to better protect them from the associated risks.
In 2013, researchers estimated that between 63 and 91% of the approximately 300,000 tons of manufactured nanomaterials produced worldwide in 2010 ended up in landfills, with the remainder being released primarily into soils (8 to 28%), in water (from 0.4 to 7%), or in the atmosphere (0.1-1.5%)1–Global life cycle releases of engineered nanomaterials, Journal of Nanoparticle Research, May 2013.
-Also: Note this clarification by Olivier Boucher, director of research at the CNRS laboratory of dynamic meteorology, concerning the allegations made on social networks about nanoparticles released by airplanes (“chemtrails”): “Do planes release chemicals without our knowledge?”, France Culture, July 28, 2018. In September 2019, however, it was learned by Emirates News Agency, that the National Meteorological Center (NMC) of the United Arab Emirates had launched a campaign of cloud seeding tests with titanium dioxide nanoparticles applied to salt crystals. The objective is to better control rainfall. What about the transport and effects of these nanoparticles in water and soil? The press release does not say so….. However, these figures are far below reality and the information collected by the r-nano register, in particular, still does not allow us to estimate and locate the volumes of nanomaterials released into the environment.
How are nanomaterials released?
The release of nanomaterials or nanomaterial residues can occur during the direct use of products containing them or under the effect of wear, abrasion or their degradation, for example:
- in the air :
- when spraying sunscreen or paint
- during alteration by collision, drilling or abrasion of bumpers, walls or surface coatings2A study by INERIS and the University of Compiègne published in early 2015 showed that a titanium dioxide nanocoating once applied to a building facade, can deteriorate under the effect of sun and rain, releasing titanium particles into the air within a few months – and moreover, in the form of free particles (more dangerous than when they are agglomerated with each other or with residues of other materials). Cf. Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather, Shandilya, N et al, Environmental Science & Technology, 49(4): 2163-2170, 2015; a lay summary is freely available here: Nanocoating on buildings releases potentially toxic particles to the air, “Science for Environment Policy,” European Commission, May 28, 2015
- in soils :
- in agriculture, when applying pesticides or fertilizers3Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling, Critical Reviews in Environmental Science and Technology, 43 (16), July 2013 containing nanomaterials,
- during in-situ soil remediation by injection of nanomaterials.
- in water :
- when swimming after having applied sunscreen4Spanish researchers have estimated that tourist activity on a Mediterranean beach during a summer day can release about 4 kg of nanoparticles of titanium dioxide in the water, resulting in an increase of 270 nM/day in the concentration of hydrogen peroxide (a molecule with toxic potential, especially for phytoplankton which is the basic food of marine animals). Cf. Nanos UV screens: a danger to marine life, The Cosmetics Observatory, September 5, 2014,
- when washing textiles5See in particular:
– Quantitative characterization of TiO2 nanoparticle release from textiles by conventional and single particle ICP-MS, Mackevica A et al, Journal of Nanoparticle Research, 20:6, January 2018
– Silver nanoparticles lost in the first wash, Chemistry World, 30 March 2016 and Durability of nano-enhanced textiles through the life cycle: releases from landfilling after washing, DM Mitrano et al, Environ. Sci.: Nano, 2016, - from rainwater runoff on nano-coated cement and exterior paint6Cf.
– Mechanisms limiting the release of TiO2 nanomaterials during photocatalytic cement alteration: the role of surface charge and porous network morphology, Bossa N, Environmental Science: Nano, 2, 2019
– Sewage spills are a major source of titanium dioxide engineered (nano)-particle release into the environment, Loosli F et al., Environ. Sci.: Nano, 6, 763-777, 2019
– Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather, Shandilya, N et al., Environmental Science & Technology, 49(4): 2163-2170, 2015 ; a summary available for free: Nanocoating on buildings releases potentially toxic particles to the air, « Science for Environment Policy », European Commission, 28 may 2015
Based on current knowledge of nano release, it is assumed that it will be at its highest, in descending order, for sprays, tires, sunscreens, textiles, exterior paints and cements (whose share could nevertheless increase considerably in the near future7“in the future, the largest flows and stocks of TiO2 NPs could be related to self-cleaning cement” in Particle Flow Analysis: Exploring Potential Use Phase Emissions of Titanium Dioxide Nanoparticles from Sunscreen, Paint, and Cement, Arvidsson R et al, Journal of Industrial Ecology, 16(3): 343-351, June 2012), and to a lesser extent for plastic or metallic coatings of household appliances, or for glass, to which nanomaterials are more firmly “attached”.
A complex phenomenon occurring throughout the “life cycle
The release of manufactured nanomaterials can occur throughout the “life cycle” of products, without it being known today in what form, in what quantities, and with what effects precisely. At each stage of the life cycle, many parameters come into play. The release will indeed be different according to the way nanomaterials are presented (in powder form, in solution, deposited on a surface or integrated into a matrix, etc.), the conditions of production/use/waste management, and the “medium” that surrounds them: air, water, soil, etc.
Releases during production, processing and transport of nanomaterials
Where do releases occur? In particular:
- in mines where the materials from which some nanomaterials are made are extracted (for example titanium for titanium dioxide nanoparticles)?
- in workplaces where they are synthesized/handled/processed?
- in industrial effluents?
- on the transport routes (sea, road or rail) of materials in case of an accident?
In addition, the law does not currently include any specific provisions on the containment and securing of places where manufactured nanomaterials are present, nor on the treatment of industrial effluents potentially containing nanomaterials.
What are the releases at the “end of life” of products?
- during combustion (fire or incineration): Initial results have shown that cerium oxide nanoparticles can be found intact on the surface of combustion residues and thus be transferred as such to landfills or recovered materials8– Persistence of engineered nanoparticles in a municipal solid-waste incineration plant, Walser et al, Nature Nanotechnology, 7, 520-524 (2012).
– More recent work has shown that the nanostructure of some wastes can be transferred into the raw emissions at the furnace outlet generated by the combustion process (bag filter type purification systems seem to be very efficient in treating these emissions containing nanos) cf. Nanosafety – Studying the emissions of nano-structured waste in incineration processes – Results of the NanoFlueGas project, INERIS, Mines de Nantes and Trédi, 2 April 2015 ;
– However, other studies show that the behavior of nanowaste during incineration differs according to its composition and that some nanoparticles may persist at the end of the incineration furnace, through the effluents and ashes. Particle emission limits for waste incinerators are currently expressed in total mass concentration, in micrograms per cubic meter of air, which is not relevant for nanoparticles that have a negligible mass and yet a suspected increased toxicity; the standards should impose a concentration limit in number of particles, or in mass but for given particle sizesSee in particular:
– What happens to nanoparticles when they become waste, I’MT Tech, September 2019
– Nanomaterials in transport and housing: What are the risks related to thermal degradation, Simon Delcour, LNE, wébinar, June 2019
– NANOTOX’IN: Assessment of the risks induced by the incineration of emerging polymer matrix nanocomposites: during incineration processes, do these new nanoparticle-based plastic products release nanoparticles? With what risks for public health? A project funded by ADEME, carried out by Armines (Saint-Etienne School of Mines and Alès School of Mines) and the National Laboratory of Metrology and Testing (LNE) in 2016 and 2017
– Incineration of waste containing nanomaterials, OECD, November 2015 - during land filling: there is a high likelihood of infiltration of solid nanomaterials into the liquids that escape from landfill waste ( leachate9)Landfilling of nanomaterial-containing waste, OECD, November 2015
- during the spread of sludge from sewage treatment plants to be used as fertilizer on agricultural soils
These questions need to be explored further, as published work on the release of nanomaterials into the environment is still fragmentary. In addition, many studies have been carried out under conditions that are often far from those encountered in reality and on nanomaterials that are different from those actually incorporated in products currently on the market. Research is underway to learn more10See for example Nanosafety Analysis of Graphene-Based Polyester Resin Composites on a Life Cycle Perspective, Aznar Mollá, F et al, Nanomaterials, 12, 2036, 2022.
To be continued…11In mid-2022, the journal Nanomaterials issued a call for papers for a special issue: Cf. Special Issue “Quantitative Material Releases from Products and Articles Containing Manufactured Nanomaterials Nanomaterials, 2022 (deadline for submission of publications: January 31, 2023)
- In France :
- Management of waste and effluents containing nanomaterials. Fate and impact in the treatment and recovery processes – Summary RECORD, 2019
- The NANOTOX’IN project : Evaluation of the risks induced by the incineration of nanocomposites with emerging polymer matrices: during incineration processes, do these new nanoparticle-based plastic products release nanoparticles? With what risks for public health? A project funded by ADEME, carried out by Armines (Saint-Etienne School of Mines and Alès School of Mines) and the National Laboratory of Metrology and Testing (LNE) in 2016 and 2017
- The AgingNano & Troph project:
- purpose: to determine the environmental impact of degradation residues of marketed nanomaterials: fate, biotransformation and toxicity with respect to target organisms in an aquatic environment
- funding: the National Research Agency
- period: 2009-2012
- partners: CEREGE, CEMAGREF, CEA, DUKE University, INERIS, IRCELYON, LBME, LIEBE
- Several years ago, CEA began work on the dispersion in the air of nanoparticles released during the abrasion of nanomaterials: PET and PVC nanotextiles, or paints and polymers in the framework of the European NanoHouse project mentioned below.
- NanoEMIS :
- object: the release of nanomaterials related to the aging of products (containing or not nanomaterials)
- partners: the team “Transformations Intégrées de la Matière Renouvelable” of the University of Technology of Compiègne and INERIS
- The work carried out within the framework of Labex Serenade should also enable progress towards the goal of an eco-design of the nano-products, which thus do not release toxic nanomaterials in the environment.
- The INERIS nano-safe platform set up in 2014 studies in particular the emissivity of nanoparticles in the ambient air by materials and products throughout their life cycle, in particular through the Nano-Data project
14; see also our sheet on INERIS’ nano work.
- At the European level:
- NanoHouse:
- subject: life cycle assessment of nanomaterials for construction, in particular on chronic exposure for silver and titanium dioxide nanoparticles contained in paints and coatings used inside and outside homes
- funding: €2.4 million from the European Commission, out of a total budget of €3.1 million
- period: January 2010 – June 2013
- French partners: CEA and ISTerre
- results: Influence of paints formulations on nanoparticles release during their life cycle, Fiorentino B et al, Journal of Nanoparticle Research, 17:149, March 2015
- NEPHH (Nanomaterials-related Environmental Pollution and Health Hazards throughout their life-cycle)
- subject: assessment of the major health risks associated with nanotechnologies and resulting from the production, use and degradation of silicon-based polymer nanocomposites.
- funding: €2.4 million from the European Commission
- period: 2009-2012
- French partners: CEREGE
- NanoHouse:
- Other projects address the release of nanomaterials among other aspects of nanomaterial risk analysis. For more information, please refer to the list of European projects on health or environmental safety of nanotechnologies conducted in May 2012 by the Institute of Technology Assessment of the Austrian Academy of Sciences, or the more detailed “Compendium of Projects in the European NanoSafety Cluster”. published in February 2012.
- In the United States:
- The American consortium “Center for Environmental Implications of Nanotechnology” (CEINT), directed by Marc Wiesner, is studying, among other things, the leakage of nanomaterials, the effectiveness of effluent treatment, the alteration of products, and end-of-life storage.
- University researchers have shown that carbon nanotubes contained in a matrix can be released into the environment under the effect of sunlight and moderate humidity: Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: environmental and toxicological implications, The Science of the Total Environment, 473-474, 9-19, December 2013.
- researchers connected to (or from) industry published a review of the literature on the release of nanomaterials from solid nanocomposites: A review and perspective of existing research on the release of nanomaterials from solid nanocomposites, Particle and Fibre Toxicology, 11:17, 2014
- Within the OECD, the Working Group on Resource Productivity and Waste (WG-RPW) has been examining the fate and impacts of nanomaterials contained in products and released during the processing of those products at the end of their life. Three reports on the incineration, recycling and landfilling of waste containing nanomaterials were submitted to delegates from OECD member countries in late 2013, before being published in November 2015:
- Incineration of waste containing nanomaterials, OECD, November 2015
- Recycling of waste containing nanomaterials, OECD, November 2015
- Landfilling of waste containing nanomaterials, OECD, November 2015
- Nanomaterials in Waste Streams, Chapter 1, OECD, November 2015
What is the fate and behavior of manufactured nanomaterials in the environment?
What mobility and accumulation of nanomaterials in the environment?
What happens to nanomaterials or nanomaterial residues once they are released into the environment? It is known that due to their small size, nanomaterials have a strong propensity to disperse and can reach places inaccessible to larger particles. To what extent and in what form(s)?
- In the air: nanomaterials released into the air can disperse easily and over long distances in the atmosphere before falling back down12Effects of nanoparticles on climate and air pollution, Patrick Rairoux – LASIM and Christian and Georges – IRCELYON, presentation at the seminar “Nanomaterials in the environment and impacts on ecosystems and human health” organized by EnvitéRA, July 2012.
- In the soil13See in particular:- Plastic pollution also threatens plants (and by the way, our food), Marcus Dupont-Besnard, 23 June 2020
–Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana, Xiao-Dong Sun et al, Nature Nanotechnology, 22 June 2020
-Marie Simonin’s 2015 thesis: Dynamics, reactivity and ecotoxicity of metal oxide nanoparticles in soils: impact on the functions and diversity of microbial communities. The study concerns titanium dioxide (TiO2) and copper oxide (CuO) nanoparticles in six agricultural soils. The study concludes that there is no toxicity of TiO2 nanoparticles on the microbial communities, except in a silty-clay soil with a high organic matter content. In this soil, negative effects were observed after 90 days of exposure on microbial activities (respiration, nitrification and denitrification), on the abundance of nitrifying microorganisms and the diversity of bacteria and archaea. Moreover, negative effects are observed on nitrification, even for extremely low concentrations of TiO2 (0.05 mg kg-1), mainly related to a strong sensitivity to this pollutant of the ammonium oxidizing archaea (AOA) involved in this process.: do they migrate into groundwater or are they trapped in the soil before reaching the water table? Do they end up in the soil after the application of sludge from wastewater treatment plants containing them (which is done to complete the treatment process while serving as a fertilizer) to agricultural land? - In aquatic environments, nanoparticles can:
- sediment by gravity (especially in the case of aggregated and/or hydrophobic nanomaterials such as carbon nanotubes) which increases the risk of contact with microorganisms living on aquatic sediments
- or on the contrary remain in suspension (especially if they are functionalized on the surface or coated) and disperse easily14Transport of nanoparticulate TiO2 UV-filters through a saturated sand column at environmentally relevant concentrations, Motellier D et al., Science of the Total Environment, 811, 152408, mars 2022, increasing the risk of exposure; nanomaterials are already found in water treatment plants and industrial water treatment, but the treatments in place were not designed to filter them15See the work of the “Nanotechnology waste” working group of the Midi-Pyrenees Regional Industrial Waste Observatory (ORDIMIP). A significant part ends up in surface waters, while the others accumulate in the sludge of wastewater treatment plants spread on agricultural land…
More generally, nanomaterials or nanomaterial residues can also :
- penetrate and accumulate in different species bacterial, plant, animal, terrestrial or aquatic (knowledge should increase in the coming years thanks to advances in metrology allowing the detection of nanomaterials in biological tissue16Cf. An analytical workflow for dynamic characterization and quantification of metal-bearing nanomaterials in biological matrices, Monikh FA et al, Nature protocols, 2022).
- be transferred from generation to generation, and move up the food chain
Many questions are still unanswered
Once in the environment, nanomaterials or nanomaterial residues can undergo transformations: which ones and under what conditions? Many parameters come into play and lead, for example, to their dispersion or sedimentation in aquatic environments, depending on whether they remain isolated or aggregate. What happens when they come into contact with naturally occurring suspended matter (mineral, chemical or biological materials)?
All these questions cannot have a simple answer, as the factors involved are so numerous and variable (the light17On the influence of light on the physicochemical parameters of nanomaterials, see for example:
– New Study Shows How Engineered Nanomaterials Degrade, Persist in Environment, News of the World, Sept. 1, 2021 (news release in English: New Study Shows How Engineered Nanomaterials Degrade, Persist in Environment, George Washington University, Sept. 1, 2021), the degree of acidity18On the influence of acidity on the physicochemical parameters of nanomaterials, see for example:
– Fate of iron nanoparticles in the environment. Colloidal stability, chemical reactivity and impacts on plants Edwige Demangeat’s thesis, Geosciences Rennes UMR 6118, 2018
– Natural acids in soil could protect rice from toxic nanoparticles, Science News, April 2015 or salinity19On the influence of salinity on the physicochemical parameters of nanomaterials, see for example: On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): A case of silver nanoparticles toxicity, Environmental Pollution, 255, 3, 113358, December 2019
– Combined influence of oxygenation and salinity on aggregation kinetics of the silver reference nanomaterial NM-300K, Devoille L et al, Environmental Toxicology and Chemistry, 37(4): 1007-1013, April 2018
– Nanomaterials across a salinity gradient: exposure and ecotoxicological effects during their life cycle Carole Bertrand, thesis, 2016, with the participation of Laure Giamberini, in connection with the project NanoSALT supported by the ANR to understand the fate of Ag and CeO2 nanoparticles from textiles and paints.
– The influence of salinity on the fate and behavior of silver standardized nanomaterial and toxicity effects in the estuarine bivalve Scrobicularia plana, Bertrand, C et al. , Environ Toxicol Chem, 2016 for example, can be decisive). As a result, it is very difficult to determine the effects on ecosystems in each case. Because many studies have long been conducted on synthetic nanoparticles under conditions different from those encountered in reality, the behavior of nanomaterials observed in experiments does not reflect that (or those) of nanomaterial residues actually present in the environment. The results are therefore not yet generalizable and should be considered with caution.
Few studies focus specifically and almost exclusively on the fate of nanomaterials in the environment. In 2012, we had identified the following projects (help us update this list, by reporting projects to us at redaction(at)veillenanos.fr)
- In France:
- Management of waste and effluents containing nanomaterials. Fate and impact in the treatment and recovery processes – Summary RECORD, 2019
- Aquanano Program:
- subject: transfer and fate of nanoparticles in groundwater
- funding: 1.6 million euros from the National Research Agency
- period: 2007-2010
- partners: CEREGE, INERIS, the Suez-Environment Research Center, BRGM (coordinator), a public organization that is a reference in the field of earth sciences for the management of soil and subsoil resources and risks.
- AgingNano & Troph project:
- subject: the environmental impact of degradation residues of marketed nanomaterials: fate, biotransformation and toxicity with respect to target organisms in an aquatic environment
- funding: €500,000 from the National Research Agency
- period: 2009-2011
- partners: CEREGE, IRSTEA, CEA, DUKE University, INERIS, IRCELYON, LBME, LIEBE
- the MESONNET project
- object: the potential consequences of nanoparticles on ecosystems; the approach uses “mesocosms”: huge aquariums reproducing a mini eco-system in which the behavior of nanoparticles in contact with plants, fish, soil and water is studied at different doses. The transfer of nanoparticles in porous medium of more complex composition must be studied.
- funding: nearly 2 million euros from the ANR
- period: end of 2010- end of 2014
- partners: CEREGE, IMEP, LCMCP, ECOLAB, CIRIMAT, CEA, LIEBE, Institut Néel/FAME, CINaM, LHYGES, DUKE University
- the project to evaluate the phyto-availability of nanomaterials
- purpose: if the presence of nanomaterials in cultivated soils is likely in the short term, the risk of their passage into the food chain via crops remains to be specified: this involves quantitatively evaluating the phyto-availability of nanomaterials with respect to crops intended for animal or human consumption.
- period: 2013
- partners: CEREGE and CIRAD
- In Switzerland
- EMPA researchers work on modeling nanomaterials in the environment
- See in particular the page “The behavior of nanoparticles in waterways“, February 28, 2013
- Researchers from Zurich reiterated in 2017 the difficulty of understanding the fate of nanomaterials in the environment: Nanoparticles remain unpredictable, ETH Zurich, April 2017
- At the European level:
- The NanoFATE project is dedicated to the evaluation of the fate of nanoparticles in the environment. Initiated in April 2010, it is financed with 2.5 million euros by the European Commission (for a global budget of 3.25 million euros) until April 2014. Of the twelve partners involved, only one is French: the Symlog Institute. The findings published in November 2014 were relayed by Science for Environment Policy, a service of the European Commission in a summary sheet.
- The FP7 project nanoMILE (2013-2017): Engineered nanomaterial mechanisms of interactions with living systems and the environment: a universal framework for safe nanotechnology. It aims to document the interactions between nanoparticles and living organisms throughout the life cycle.
- The European project NANOFASE coordinated by NERC (Natural Environment Research Council) aims to understand and control the behavior of nanomaterials in the environment, by proposing an integrated approach to risk management and protocols. INERIS is participating for France.
- Other projects address the fate of nanomaterials among other aspects of nanomaterial risk analysis. For more information, please refer to the list of European projects on health or environmental safety of nanotechnologies conducted in May 2012 by the Institute of Technology Assessment of the Austrian Academy of Sciences, or the more detailed “Compendium of Projects in the European NanoSafety Cluster”. published in February 2012.
- In the United States, the American consortium “Center for Environmental Implications of Nanotechnology” (CEINT) directed by Marc Wiesner is studying the transfer of nanomaterials into the environment.
- Within the OECD, the Resource Productivity and Waste Working Group (RWWG) has been working on the fate and impacts of nanomaterials contained in products and released during the treatment of these products at the end of their life cycle (incineration, landfilling, spreading of sewage sludge).
Any questions or comments? This information sheet compiled by AVICENN is intended to be completed and updated. Please feel free to contribute.
Upcoming Nano Agenda
- Second Harmonisation & Standardisation of Test Methods for Nanomaterials and Advanced Materials Workshop (Webinar)
- Organizers: Horizon Europe projects iCare, MACRAMÉ and nanoPASS, in collaboration with the Malta Initiative
- Dates: Nov 18 & 19, 2024
- Website: https://macrame-project.eu/macrame-meetings-workshops/#HS-Workshop2
- This module is part of the training program “Interactions between toxic chemicals and the human organism”, open to anyone with a basic scientific education (bachelor’s degree or professional experience).
- Organizer: Association Toxicologie Chimie(ATC)
- Speaker : Chantal Fresnay, Hygienist Engineer, Thales, Palaiseau
- Website: www.atctoxicologie.fr
- Awareness-raising aimed at personnel in contact with nanomaterials during research, formulation, production, maintenance, cleaning, upkeep, etc., as well as safety coordinators or engineers, facility managers, heads of laboratories where nanoparticles are handled.
- Organizers: INSTN Grenoble (CEA)
- On the agenda: potential impact on health; metrology and protection; control of potential risks associated with nanomaterials; consideration of societal aspects.
- Website: https://instn.cea.fr/formation/maitrise-des-risques-lies-aux-nanomateriaux-sensibilisation
File initially created in September 2012
Notes and references
- 1–Global life cycle releases of engineered nanomaterials, Journal of Nanoparticle Research, May 2013.
-Also: Note this clarification by Olivier Boucher, director of research at the CNRS laboratory of dynamic meteorology, concerning the allegations made on social networks about nanoparticles released by airplanes (“chemtrails”): “Do planes release chemicals without our knowledge?”, France Culture, July 28, 2018. In September 2019, however, it was learned by Emirates News Agency, that the National Meteorological Center (NMC) of the United Arab Emirates had launched a campaign of cloud seeding tests with titanium dioxide nanoparticles applied to salt crystals. The objective is to better control rainfall. What about the transport and effects of these nanoparticles in water and soil? The press release does not say so…. - 2A study by INERIS and the University of Compiègne published in early 2015 showed that a titanium dioxide nanocoating once applied to a building facade, can deteriorate under the effect of sun and rain, releasing titanium particles into the air within a few months – and moreover, in the form of free particles (more dangerous than when they are agglomerated with each other or with residues of other materials). Cf. Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather, Shandilya, N et al, Environmental Science & Technology, 49(4): 2163-2170, 2015; a lay summary is freely available here: Nanocoating on buildings releases potentially toxic particles to the air, “Science for Environment Policy,” European Commission, May 28, 2015
- 3Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling, Critical Reviews in Environmental Science and Technology, 43 (16), July 2013
- 4Spanish researchers have estimated that tourist activity on a Mediterranean beach during a summer day can release about 4 kg of nanoparticles of titanium dioxide in the water, resulting in an increase of 270 nM/day in the concentration of hydrogen peroxide (a molecule with toxic potential, especially for phytoplankton which is the basic food of marine animals). Cf. Nanos UV screens: a danger to marine life, The Cosmetics Observatory, September 5, 2014,
- 5See in particular:
– Quantitative characterization of TiO2 nanoparticle release from textiles by conventional and single particle ICP-MS, Mackevica A et al, Journal of Nanoparticle Research, 20:6, January 2018
– Silver nanoparticles lost in the first wash, Chemistry World, 30 March 2016 and Durability of nano-enhanced textiles through the life cycle: releases from landfilling after washing, DM Mitrano et al, Environ. Sci.: Nano, 2016, - 6Cf.
– Mechanisms limiting the release of TiO2 nanomaterials during photocatalytic cement alteration: the role of surface charge and porous network morphology, Bossa N, Environmental Science: Nano, 2, 2019
– Sewage spills are a major source of titanium dioxide engineered (nano)-particle release into the environment, Loosli F et al., Environ. Sci.: Nano, 6, 763-777, 2019
– Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather, Shandilya, N et al., Environmental Science & Technology, 49(4): 2163-2170, 2015 ; a summary available for free: Nanocoating on buildings releases potentially toxic particles to the air, « Science for Environment Policy », European Commission, 28 may 2015 - 7“in the future, the largest flows and stocks of TiO2 NPs could be related to self-cleaning cement” in Particle Flow Analysis: Exploring Potential Use Phase Emissions of Titanium Dioxide Nanoparticles from Sunscreen, Paint, and Cement, Arvidsson R et al, Journal of Industrial Ecology, 16(3): 343-351, June 2012
- 8– Persistence of engineered nanoparticles in a municipal solid-waste incineration plant, Walser et al, Nature Nanotechnology, 7, 520-524 (2012).
– More recent work has shown that the nanostructure of some wastes can be transferred into the raw emissions at the furnace outlet generated by the combustion process (bag filter type purification systems seem to be very efficient in treating these emissions containing nanos) cf. Nanosafety – Studying the emissions of nano-structured waste in incineration processes – Results of the NanoFlueGas project, INERIS, Mines de Nantes and Trédi, 2 April 2015 ;
– However, other studies show that the behavior of nanowaste during incineration differs according to its composition and that some nanoparticles may persist at the end of the incineration furnace, through the effluents and ashes. Particle emission limits for waste incinerators are currently expressed in total mass concentration, in micrograms per cubic meter of air, which is not relevant for nanoparticles that have a negligible mass and yet a suspected increased toxicity; the standards should impose a concentration limit in number of particles, or in mass but for given particle sizesSee in particular:
– What happens to nanoparticles when they become waste, I’MT Tech, September 2019
– Nanomaterials in transport and housing: What are the risks related to thermal degradation, Simon Delcour, LNE, wébinar, June 2019
– NANOTOX’IN: Assessment of the risks induced by the incineration of emerging polymer matrix nanocomposites: during incineration processes, do these new nanoparticle-based plastic products release nanoparticles? With what risks for public health? A project funded by ADEME, carried out by Armines (Saint-Etienne School of Mines and Alès School of Mines) and the National Laboratory of Metrology and Testing (LNE) in 2016 and 2017
– Incineration of waste containing nanomaterials, OECD, November 2015 - 9)Landfilling of nanomaterial-containing waste, OECD, November 2015
- 10See for example Nanosafety Analysis of Graphene-Based Polyester Resin Composites on a Life Cycle Perspective, Aznar Mollá, F et al, Nanomaterials, 12, 2036, 2022
- 11In mid-2022, the journal Nanomaterials issued a call for papers for a special issue: Cf. Special Issue “Quantitative Material Releases from Products and Articles Containing Manufactured Nanomaterials Nanomaterials, 2022 (deadline for submission of publications: January 31, 2023)
- 12Effects of nanoparticles on climate and air pollution, Patrick Rairoux – LASIM and Christian and Georges – IRCELYON, presentation at the seminar “Nanomaterials in the environment and impacts on ecosystems and human health” organized by EnvitéRA, July 2012
- 13See in particular:- Plastic pollution also threatens plants (and by the way, our food), Marcus Dupont-Besnard, 23 June 2020
–Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana, Xiao-Dong Sun et al, Nature Nanotechnology, 22 June 2020
-Marie Simonin’s 2015 thesis: Dynamics, reactivity and ecotoxicity of metal oxide nanoparticles in soils: impact on the functions and diversity of microbial communities. The study concerns titanium dioxide (TiO2) and copper oxide (CuO) nanoparticles in six agricultural soils. The study concludes that there is no toxicity of TiO2 nanoparticles on the microbial communities, except in a silty-clay soil with a high organic matter content. In this soil, negative effects were observed after 90 days of exposure on microbial activities (respiration, nitrification and denitrification), on the abundance of nitrifying microorganisms and the diversity of bacteria and archaea. Moreover, negative effects are observed on nitrification, even for extremely low concentrations of TiO2 (0.05 mg kg-1), mainly related to a strong sensitivity to this pollutant of the ammonium oxidizing archaea (AOA) involved in this process. - 14Transport of nanoparticulate TiO2 UV-filters through a saturated sand column at environmentally relevant concentrations, Motellier D et al., Science of the Total Environment, 811, 152408, mars 2022
- 15See the work of the “Nanotechnology waste” working group of the Midi-Pyrenees Regional Industrial Waste Observatory (ORDIMIP)
- 16Cf. An analytical workflow for dynamic characterization and quantification of metal-bearing nanomaterials in biological matrices, Monikh FA et al, Nature protocols, 2022
- 17On the influence of light on the physicochemical parameters of nanomaterials, see for example:
– New Study Shows How Engineered Nanomaterials Degrade, Persist in Environment, News of the World, Sept. 1, 2021 (news release in English: New Study Shows How Engineered Nanomaterials Degrade, Persist in Environment, George Washington University, Sept. 1, 2021) - 18On the influence of acidity on the physicochemical parameters of nanomaterials, see for example:
– Fate of iron nanoparticles in the environment. Colloidal stability, chemical reactivity and impacts on plants Edwige Demangeat’s thesis, Geosciences Rennes UMR 6118, 2018
– Natural acids in soil could protect rice from toxic nanoparticles, Science News, April 2015 - 19On the influence of salinity on the physicochemical parameters of nanomaterials, see for example: On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): A case of silver nanoparticles toxicity, Environmental Pollution, 255, 3, 113358, December 2019
– Combined influence of oxygenation and salinity on aggregation kinetics of the silver reference nanomaterial NM-300K, Devoille L et al, Environmental Toxicology and Chemistry, 37(4): 1007-1013, April 2018
– Nanomaterials across a salinity gradient: exposure and ecotoxicological effects during their life cycle Carole Bertrand, thesis, 2016, with the participation of Laure Giamberini, in connection with the project NanoSALT supported by the ANR to understand the fate of Ag and CeO2 nanoparticles from textiles and paints.
– The influence of salinity on the fate and behavior of silver standardized nanomaterial and toxicity effects in the estuarine bivalve Scrobicularia plana, Bertrand, C et al. , Environ Toxicol Chem, 2016