Please be aware that this is a machine translation from French to English. AVICENN is not responsible for incorrect or inaccurate translations but welcomes suggestions for reformulation.

VeilleNanos - Life cycle of nanomaterials and nano-enhanced products

Life cycle of nanomaterials and nano-enhanced products

image
News
+ Info sheets
Agenda

Consider the entire life cycle of nanomaterials and nano enhanced products

By the AVICENN team – Last updated May 2024

In order to not to repeat the mistakes of the past, it is necessary that industrialists, risk assessment and management authorities and researchers consider the entire life cycle of nanomaterials: from initial production, usage or consumption to destruction or recycling.

A comprehensive approach – social life cycle assessment (SLCA) – is being promoted by the United Nations Environment Programme (UNEP)1Guidelines for Social Life Cycle Assessment, UNEP, 2009. It can be applied to nanomaterials and must be conducted prospectively, prior to commercialization – not in “firefighting mode” after health or environmental problems have arisen. This is a broader “benefit-risk” analysis than that commonly proposed by proponents of the traditional (and limited) risk assessment approach. In particular, it considers the following questions: “what benefits/risks, for whom, where, when?

At present, scientists have very limited knowledge of the types of nanomaterials that are incorporated into products currently on the market, and a fortiori of any degradation residues of nanomaterials released throughout the “life cycle” of these products; they also know little about their mobility and transformations in the environment or in the human body: many parameters come into play, such as the ageing of the nanomaterials2See for example Ageing influences the toxicity of two innovative nanofertilizers to the soil invertebrates Enchytraeus crypticus and Folsomia candida, C. Maleihro, Environmental Pollution, 350, Juin 2024, the degree of acidity or salinity of the water for example3On the influence of acidity on the physicochemical parameters of nanomaterials, see for example:
Fate of iron nanoparticles in the environment. Colloidal stability, chemical reactivity and impacts on plants Edwige Demangeat’s thesis, Geosciences Rennes UMR 6118, 2018
Natural acids in soil could protect rice from toxic nanoparticles, Science News, April 2015
.

In May 2019, Science for Environment Policy reports on the progress of a life cycle assessment method tailored to emerging technologies: the Lifecycle Screening of Emerging Technologies (LiSET). Will it be usable and used before the marketing of certain “nanos”? The question needs to be investigated.

Elsewhere on the web

In French :

In English:

Any questions or comments? This information sheet compiled by AVICENN is intended to be completed and updated. Please feel free to contribute.

Upcoming Nano Agenda

30
Jan.
2025
Research and stakeholders meeting (ANSES, Maisons-Alfort)
Maisons-Alfort
Forum
18
Mars
2025
C’Nano 2025: The Nanoscience Meeting (C’Nano – Paris, France)
Paris
Congress
  • 6th interdisciplinary nanoscience congress, dedicated to all academic and industrial scientists in nanoscience and nanotechnology, including researchers, engineers, PhD students, post-docs, etc.
  • March 18 to 21, 2025
  • Organizers: Centre national de Compétences en Nanosciences du CNRS, C’Nano
  • Website: https://cnano2025.sciencesconf.org
14
Avr.
2025
Advanced Characterization Techniques in Nanomaterials and Nanotechnology (Nano2025, Rome – Italy)
Rome
Congress
  • Advanced Characterization Techniques in Nanomaterials and Nanotechnology 
  • 10th European Congress on Advanced Nanotechnology and Nanomaterials
  • 14 and 15 April 2025
  • Website: https://nanomaterialsconference.com

This sheet was originally created in November 2014


Notes and references

Our monitoring, information and actions need you to continue !