Please be aware that this is a machine translation from French to English. AVICENN is not responsible for incorrect or inaccurate translations but welcomes suggestions for reformulation.

VeilleNanos - Life cycle of nanomaterials and nano-enhanced products

Life cycle of nanomaterials and nano-enhanced products

image
News
+ Info sheets
Agenda

Consider the entire life cycle of nanomaterials and nano enhanced products

By the AVICENN team – Last updated May 2024

In order to not to repeat the mistakes of the past, it is necessary that industrialists, risk assessment and management authorities and researchers consider the entire life cycle of nanomaterials: from initial production, usage or consumption to destruction or recycling.

A comprehensive approach – social life cycle assessment (SLCA) – is being promoted by the United Nations Environment Programme (UNEP)1Guidelines for Social Life Cycle Assessment, UNEP, 2009. It can be applied to nanomaterials and must be conducted prospectively, prior to commercialization – not in “firefighting mode” after health or environmental problems have arisen. This is a broader “benefit-risk” analysis than that commonly proposed by proponents of the traditional (and limited) risk assessment approach. In particular, it considers the following questions: “what benefits/risks, for whom, where, when?

At present, scientists have very limited knowledge of the types of nanomaterials that are incorporated into products currently on the market, and a fortiori of any degradation residues of nanomaterials released throughout the “life cycle” of these products; they also know little about their mobility and transformations in the environment or in the human body: many parameters come into play, such as the ageing of the nanomaterials2See for example Ageing influences the toxicity of two innovative nanofertilizers to the soil invertebrates Enchytraeus crypticus and Folsomia candida, C. Maleihro, Environmental Pollution, 350, Juin 2024, the degree of acidity or salinity of the water for example3On the influence of acidity on the physicochemical parameters of nanomaterials, see for example:
Fate of iron nanoparticles in the environment. Colloidal stability, chemical reactivity and impacts on plants Edwige Demangeat’s thesis, Geosciences Rennes UMR 6118, 2018
Natural acids in soil could protect rice from toxic nanoparticles, Science News, April 2015
.

In May 2019, Science for Environment Policy reports on the progress of a life cycle assessment method tailored to emerging technologies: the Lifecycle Screening of Emerging Technologies (LiSET). Will it be usable and used before the marketing of certain “nanos”? The question needs to be investigated.

Elsewhere on the web

In French :

In English:

Any questions or comments? This information sheet compiled by AVICENN is intended to be completed and updated. Please feel free to contribute.

Upcoming Nano Agenda

6
Juin
2024
Managing the risks associated with nanomaterials (CEA, Grenoble)
Grenoble
Training
  • Awareness-raising aimed at personnel in contact with nanomaterials during research, formulation, production, maintenance, cleaning, upkeep, etc., as well as safety coordinators or engineers, facility managers, heads of laboratories where nanoparticles are handled.
  • Organizers: INSTN Grenoble (CEA)
  • On the agenda: potential impact on health; metrology and protection; control of potential risks associated with nanomaterials; consideration of societal aspects.
  • Website: https://instn.cea.fr/formation/maitrise-des-risques-lies-aux-nanomateriaux-sensibilisation
6
Juin
2024
Nanomaterials and Health (ANSES, Maisons-Alfort)
Maisons-Alfort
Dialogue Committee
10
Juin
2024
Nanoparticles NPC-24 (ETH, Zurich)
Zurich
Conference
  • 27th ETH Nanoparticles Conference
  • Organizer: ETH Zurich
  • From June 10 to June 14, 2024
  • Website: https://npc24.scg.ch

This sheet was originally created in November 2014


Notes and references

Our monitoring, information and actions need you to continue !