Please be aware that this is a machine translation from French to English. AVICENN is not responsible for incorrect or inaccurate translations but welcomes suggestions for reformulation.

VeilleNanos - Le domaine de l'infiniment petit

Le domaine de l’infiniment petit

image
Actus
+ de fiches
Agenda

Le domaine de l’infiniment petit

Par l’équipe AVICENN – Dernière modification février 2023

De quel infiniment petit parle-t-on ?

Nanotechnologies : fabriquer et manipuler des nano-objets

Les nanotechnologies désignent les procédés de fabrication et/ou de manipulation de structures à l’échelle nanométrique (nm), celle de l’infiniment petit :

On se situe aux échelles moléculaire et atomique. A titre indicatif :

  • certains virus font une centaine de nm de diamètre
  • l’ADN humain a une largeur de 2 nm,
  • et un atome de carbone ou d’hydrogène mesure 0,1 nm

C’est en 1974 qu’est apparu le terme « nanotechnologies », qui ont commencé à se développer dans les années 1980, avec la création du microscope à effet tunnel puis du microscope à force atomique.

Schéma extrait du magazine Kali, décembre 2021

Qu’est ce qu’un nano-objet?

Les nanos-objets ou nanoparticules sont comme des nano-grains mais qui peuvent avoir des formes très différentes (fils, plaquettes, particules ou substances nanoporeuses) et qui sont généralement regroupés entre eux, notamment sous forme de poudre.

D’un point de vue chimique, pour simplifier on peut les considérer comme des substances différentes des substances « classiques », différentes à deux points de vue :

  • d’une part au niveau de la taille, car ce sont particules sont de très petite dimension, puisqu’on se situe à l’échelle nanométrique
  • d’autre part, les nanoparticules et nanomatériaux ont des propriétés différentes de celles des matériaux classiques : ils peuvent changer de couleur ou devenir plus conducteurs, plus solides, plus photocatalytiques par exemple.

Les nanomatériaux manufacturés

Les nanomatériaux manufacturés désignent des matériaux à l’échelle nanométrique fabriqués par l’homme ; ils possèdent des propriétés « extraordinaires » (au sens propre du terme) par rapport aux matériaux structurés à l’échelle micro- ou macroscopique.

Ils sont différents :

Malgré leurs différences, les nanomatériaux manufacturés et les particules ultrafines (PUF) ont de nombreux points communs, notamment en termes de défis concernant les outils pour les détecter, les mesurer et les caractériser ou pour évaluer leurs risques3Cf. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge, Stone V et al., Environmental Health Perspectives, 125(10), 2017.

S’il existe déjà plusieurs centaines de substances différentes commercialisées à l’échelle nano (plus de 300 sont enregistrées dans le registre français r-nano et également listés sur l’observatoire européen des nanomatériaux), la très grande majorité des nanomatériaux utilisés par l’industrie appartiennent aux quatre catégories suivantes :

Ils se présentent le plus généralement sous forme de poudres ultra-fines (dans des crèmes, des lotions, des sprays, des pansements…), auxquelles les humains ou l’environnement peuvent être directement exposés.

Ils peuvent être incorporés dans des matériaux solides (comme les nanotubes de carbone dans des cadres de vélos), auquel cas ils n’entrent pas directement en contact avec les humains ou l’environnement lors de leur utilisation, mais potentiellement pendant leur production ou lors de la dégradation des produits à la fin de leur cycle de vie.

Des propriétés spécifiques

En effet, l’intérêt et l’essor croissant des nanomatériaux s’expliquent par les propriétés spécifiques qu’il est possible de créer en modifiant la matière à l’échelle nanométrique, notamment la taille ou d’autres caractéristiques physico-chimiques des matériaux.

A l’échelle nano, la matière déploie des propriétés nouvelles ou plus marquées, notamment du fait de la petite taille des nanomatériaux qui leur confère une surface de réaction plus grande que le même matériau non nanométrique. Pourquoi ? Parce que la proportion d’atomes en surface (par rapport au volume) est plus importante que pour les matériaux plus grands, permettant des échanges et des interactions plus importantes avec leur environnement4Voir par exemple :
Nanoparticles: Is Toxicity a Concern? D R, Rao P. EJIFCC, Décembre 2011
Reactivity of inorganic nanoparticles in biological environments: insights into nanotoxicity mechanisms. Casals E, Gonzalez E, Puntes VF , Journal of Physics D: Applied Physics, 2012
.

Deux images pour comprendre cet « effet taille » :

  • visualisez la superficie couverte par le contenu d’une cuillerée de cacao en poudre renversé sur la table : elle est équivalente à la surface d’une tablette entière de chocolat
  • le cacao en poudre fond plus vite dans du lait que de gros carrés de chocolat

De même, les nanomatériaux sont plus « réactifs » que les matériaux non nano.

Au niveau industriel, ces nouvelles propriétés des nanomatériaux sont perçues comme des opportunités dans de nombreux domaines d’application, d’où le nombre croissant de brevets chaque année5Voir par exemple :
Nanotechnology Published Patent Applications in USPTO: Number and Annual Growth Rate during the Past 20 Years, StatNano, 30 décembre 2020
Nanomaterials with the Highest Number of Granted Patents in USPTO, StatNano, 25 novembre 2020
Nanotechnology patents in USPTO (Patent), StatNano (consulté en novembre 2020)
.

Une crème solaire contenant des nanoparticules de dioxyde de titane (TiO2) est plus transparente qu’une crème « classique » dont le TiO2 n’est pas nano, évitant ainsi les dépôts blancs sur la peau, ce que les marques utilisent comme arguments de vente.

Des propriétés nouvelles, de nouveaux marchés

La plupart des nanoproduits aujourd’hui sur le marché offrent des avantages dus à l’adjonction de poudres nanoparticulaires qui leur confèrent de nouvelles propriétés, aux atouts divers :

  • élimination des bactéries (et des mauvaises odeurs) pour le nanoargent, utilisé dans les textiles, les pansements, les sprays désinfectants, les revêtements des frigos, des claviers, des emballages alimentaires…
  • résistance et légèreté pour les nanotubes de carbone, qui constituent un atout majeur notamment pour l’industrie des transports
  • écran solaire ou effet photo-catalytique (anti-pollution) pour les nanoparticules de dioxyde de titane qui, en fonction de leur effet, peuvent être utilisées dans des crèmes solaires ou des ciments
  • effet anti-agglomérant et donc fluidifiant pour les nanosilices à usage alimentaire, utilisées dans les sucres en poudre, les sels de table, etc.
  • effet catalytique (déclenchement de réactions chimiques) pour des nanoparticules métalliques, avec des applications dans le domaine de la santé
  • effet « anti-buée » obtenu par un feuilletage de nanoparticules d’or et de dioxyde de titane

Propriétés ++ > Risques ++ ?

Qui dit « propriétés nouvelles » dit aussi, potentiellement, « risques nouveaux ». D’où le besoin d’une vigilance effective sur ces derniers.

Problème : les ressources dédiées à la surveillance et à la prévention de ces risques sont encore très faibles. C’est pourquoi AVICENN veille au grain !

Une question, une remarque ? Cette fiche réalisée par AVICENN a vocation à être complétée et mise à jour. N'hésitez pas à apporter votre contribution.

Les prochains RDV nanos

5
Oct.
2025
Ecole thématique NaMasTE (CNRS, île d’Oléron – France)
Ile d'Oléron
Formation
  • Ecole thématique du Groupement de recherche NaMasTE (Nanomatériaux Manufacturés, Toxicologie, Écotoxicologie et Risques : vers un développement maitrisé)
  • Public : ingénieurs, chercheurs (contractuels et permanents), doctorants, industriels et membres d’associations travaillant sur les nanomatériaux
  • Au programme : physico-chimie, biologie, et sciences environnementales nécessaires pour appréhender les aspects clefs liés au développement maitrisé des nanomatériaux.
    → approches de Safer-by-design, qui intègrent l’analyse de la production, la caractérisation des propriétés, le devenir, et les impacts (bénéfiques ou néfastes) des nanomatériaux et des produits qui les contiennent tout au long de leur cycle de vie
  • Dates : 5 au 10 octobre 2025
  • Organisateur : CNRS
  • Site internet : https://namaste.sciencesconf.org
6
Oct.
2025
Caractériser et prévenir les risques liés aux nanomatériaux manufacturés et particules ultrafines (INRS, Vandœuvre-Lès-Nancy – France)
Nancy
Formation
  • Formation destinée aux médecins du travail, intervenants en prévention des risques professionnels (IPRP), préventeurs d’entreprise, agents des services prévention des Carsat, Cramif et CGSS, préventeurs institutionnels (Dreets, Dreal, MSA…)
  • Organisateur : Institut national de recherche et de sécurité (INRS)
  • Du 6 au 10 octobre 2025
  • Site internet : www.inrs.fr/…/formation/…JA1030_2025
6
Oct.
2025
Intégrité scientifique, manipulation de l’information scientifique, stratégies d’influence des industries et protection des lanceurs d’alerte (Université Paris Cité, Paris – France)
Paris
Conférence
santé
conflits d'intérêts
information
recherche
risques
santé
sciences et société
  • 15h – Conférence d’Irène Frachon sur son combat pour révéler les dangers du médiator, les difficultés rencontrées par les lanceurs d’alerte face aux pressions institutionnelles et industrielles, mais aussi l’importance de leur rôle dans la défense de la santé publique.
  • 16h – Table ronde sur la manipulation de l’information scientifique et la défense des lanceurs d’alerte animée par Raphaël Lévy (professeur de physique à l’université Sorbonne Paris Nord, spécialiste des nanoparticules et de leurs utilisations en biologie, coordinateur du projet ERC NanoBubbles dédié à la recherche sur les mécanismes de correction de la science), avec :
    • Maud Bernisson, post-doctorante au LISIS (CNRS), membre du projet ERC NanoBubbles, sur les mécanismes d’influence des entreprises pharmaceutiques dans le champ scientifique
    • Marc Samama, professeur, anesthésiste-réanimateur, co-président de la Commission des blocs et plateaux techniques de la CME de l’AP-HP, past Editor-in-Chief de l’European Journal of Anaesthesiology, directeur de l’Office de l’Intégrité Scientifique de l’AP-HP
    • Solène Lellinger, maîtresse de conférences en Histoire et philosophie de la santé à l’université Paris Cité, spécialisée sur la socio-histoire du médicament et son intersection avec les pratiques médicales, et en particulier les modes de production des connaissances et informations concernant le médicament.
    • Cécile Barrois de Sarigny, adjointe à la Défenseure des Droits, chargée de la protection des lanceurs d’alerte.
  • Avec le soutien du projet ERC Synergy NanoBubbles
  • Site internet : https://u-paris.fr/sante/irene-frachon-a-paris-une-conference-et-une-table-ronde-sur-lintegrite-scientifique

Fiche initialement créée en avril 2011


Notes and references

Notre veille, nos informations et nos actions ont besoin de vous pour durer !