Risques pour la santé des nanos dans l’alimentation

image
Actus
+ de fiches
Agenda

Par l’équipe AVICENN – Dernière modification avril 2022

Risques pour la santé des nanos dans l’alimentation

Des motifs d’inquiétude concernant l’ingestion de nanos

Des études ont montré que des nanomatériaux peuvent :

  • y causer des perturbations voire des effets délétères :

Nanoparticules de dioxyde de titane (E171)

L’additif alimentaire E171, constitué de particules de dioxyde de titane (TiO2) (dont une partie sous forme nano), a été interdit en 2020 en France et en 2022 en Europe à cause de potentiels effets génotoxiques (dommages à l’ADN). De nombreuses publications font en outre état d’effets délétères sur la santé liés à l’ingestion de nanoparticules de TiO2 : risques pour le foie, les ovaires et les testicules chez les humains, problèmes immunitaires et lésions précancéreuses au niveau du côlon chez le rat, perturbations du microbiote intestinal, inflammations et altérations de la barrière intestinale chez les animaux comme chez les humains, effets néfastes pour la descendance chez les rongeurs, etc.

Nanoparticules de silice (E551)

Des effets potentiellement néfastes sur la santé associés à l’ingestion de nanoparticules de silice (le SiO2 correspond à l’additif E551) ont été mis en évidence depuis plusieurs années 4Cf
Mécanismes moléculaires de la transformation cellulaire induite par une nanoparticule de silice dans les cellules Bhas 42, Thèse d’Anais Kirsch, sous la direction de Hervé Schohn, Yves Guichard et de Hélène Dubois-Pot Schneider, en préparation à l’Université de Lorraine, dans le cadre de Biologie, santé, environnement , en partenariat avec le Centre de Recherche en Automatique de Nancy depuis le 12 mai 2017 : voir la BD e la vidéo (toutes deux réalisées en 2018)
Amorphous Silica Particles Relevant in Food Industry Influence Cellular Growth and Associated Signaling Pathways in Human Gastric Carcinoma Cells, Wittig A et al., Nanomaterials (Basel), 13;7(1), janvier 2017
Critical assessment of toxicological effects of ingested nanoparticles, McCracken C et al., Environ. Sci.: Nano, 3, 256-282, 2016
Critical review of the safety assessment of nano-structured silica additives in food, Winkler HC et al., Journal of Nanobiotechnology, 14:44, juin 2016
Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape, Li L et al., Nanomedicine: Nanotechnology, Biology and Medicine, 11(8) : 1915-1924, novembre 2015
Toxicity, genotoxicity and proinflammatory effects of amorphous nanosilica in the human intestinal Caco-2 cell line, Tarantini A et al., Toxicology in Vitro, 29(2) : 398-407, mars 2015
Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food, van Kesteren PCE et al., Nanotoxicology, 2014
, notamment des dysfonctionnements de la division cellulaire et des perturbations du trafic cellulaire5Voir notamment :
Évaluation des risques liés aux nanomatériaux pour la population générale et pour l’environnement, Afsset (aujourd’hui ANSES), mars 2010
In vitro toxicity of amorphous silica nanoparticles in human colon carcinoma cells, Nanotoxicology, 7(3), Mai 2013
Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells, Cell Biology and Toxicology, février 2014
Sub-chronic toxicity study in rats orally exposed to nanostructured silica, Particle and Fibre Toxicology, 11:8, 2014
, ainsi que des effets indésirables sur le foie6 Voir notamment :
Silica nanoparticle-induced toxicity in mouse lung and liver imaged by electron microscopy, Fundamental Toxicological Sciences, 2(1) : 19-23, 2015
Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food, van Kesteren PCE et al., Nanotoxicology, 2014
; inquiétant si l’on considère que nous absorbons en moyenne environ 124 mg de nano-silice (E551) par jour7cf. Des nanoparticules de silice dans l’alimentation, un régime risqué ?, OMNT, 20 avril 2011 ; l’article en français n’est plus accessible aujourd’hui, mais la source, en anglais, est toujours accessible : Presence and risks of nanosilica in food products, Dekkers et al., Nanotoxicology, 5(3) : 393-405, 2011  ; en outre certaines nanosilices sont plus génotoxiques à faibles doses qu’à fortes doses8Voir notamment :
– Résultats du programme européen Nanogenotox sur la génotoxicité des nanomatériaux, présentés en français à l’ANSES, lors de la Restitution du programme national de recherche environnement santé travail : Substances chimiques et nanoparticules : modèles pour l’étude des expositions et des effets sanitaires : Dossier du participant et Diaporama, novembre 2013.
‘Facilitating the safety evaluation of manufactured nanomaterials by characterising their potential genotoxic hazard’, Nanogenotox, 2013 et RISQUES : Les leçons du programme de recherche Nanogenotox, veillenanos.fr, décembre 2013
Documents présentés lors de la réunion du bureau chargé de l’évaluation des risques et de la recherche pour l’autorité de sûreté des produits de consommation des Pays Bas (NVWA) en octobre 2013
.

Ayant constaté in vitro que des nanoparticules de dioxyde de silicium peuvent générer des inflammations dans le tractus gastro-intestinal de souris (une atteinte à la défense immunitaire du système digestif), une équipe de chercheurs suisses a  préconisé une moindre utilisation de particules de silice comme additif alimentaire9Cf. Additifs alimentaires: mieux apprécier le risque des nanoparticules, communiqué de presse, 27 juin 2017 ; Test in-vitro pour évaluer le risque nanomatériaux dans les aliments, Projet mené par Hanspeter Nägeli, de l’Institut de pharmacie et toxicologie vétérinaire de l’Université de Zurich (Suisse) entre 2012-2015 et Programme national de recherche PNR 64 – Opportunités et risques des nanomatériaux – Résultats, conclusions et perspectives – brochure finale, Fonds national suisse de la recherche scientifique, mars 2017 ; MyD88-dependent pro-interleukin-1B induction in dendritic cells exposed to food-grade synthetic amorphous silica, Winckler HC et al., Particle and Fibre Toxicology, 14:21, juin 2017.

La réévaluation de la silice sous forme de E551 (nano et non nano), a été adoptée avec beaucoup de retard sur le calendrier initial, fin 2017, sans que des conclusions définitives puissent en être tirées concernant l’innocuité ou la toxicité de cet additif. Un appel à données a été ouvert par l’EFSA entre octobre 2018 et mai 2020 ; faute de données concluantes, l’autorisation actuelle de cet additif alimentaire serait révisée sur la base de l’avis scientifique actuel de l’EFSA et l’additif pourrait être retiré de la liste des additifs autorisés de l’Union européenne. (Il n’y aura pas de nouvel appel à données supplémentaires).

Depuis, de nouvelles études inquiétantes ont été publiées dans des revues scientifiques10Voir notamment :
– Oral Toxicokinetics, Tissue Distribution, and 28-Day Oral Toxicity of Two Differently Manufactured Food Additive Silicon Dioxides, Yoo N-K et al., Int J Mol Sci , 5;23(7) : 4023, avril 2022
Gut microbiome and plasma metabolome changes in rats after oral gavage of nanoparticles: sensitive indicators of possible adverse health effects, Landsiede R et al., Particle and Fibre Toxicology, 19(21), 2022
Physiological and Behavioral Effects of SiO2 Nanoparticle Ingestion on Daphnia magna, Kim Y et al., Micromachines (Basel), 12(9): 1105, septembre 2021
Dietary nanoparticles alter the composition and function of the gut microbiota in mice at dose levels relevant for human exposure, Perez L et al., Food and Chemical Toxicology, 154, août 2021
Particules dans les additifs alimentaires : quels sont les effets sur la santé digestive ? Focus sur le projet ANR PAIPITO, Entretien avec Marie Carrière (CEA Grenoble), Agence nationale de la recherche, 7 juin 2021
Oral intake of silica nanoparticles exacerbates intestinal inflammation, Ogawa T et al., Biochemical and Biophysical Research Communications, 534(1) : 540-546, janvier 2021
Impacts of foodborne inorganic nanoparticles on the gut microbiotaimmune axis: potential consequences for
host health, Lamas B et Houdeau E, Particle and Fibre Toxicology, 17: 19, 2020

Hazard identification of pyrogenic synthetic amorphous silica (NM-203) after sub-chronic oral exposure in rat: a multitarget approach, Tassinari R et al., Food Chem Toxicol., 137: 111168, 2020
Toxicity to RAW264.7 Macrophages of Silica Nanoparticles and the E551 Food Additive, in Combination with Genotoxic Agents, Dussert F et al., Nanomaterials, MDPI, 10 (7) : 1418, 2020 : Les nanoparticules de silice sont susceptibles de véhiculer des agents génotoxiques à leur surface ce qui conduit à aggraver leurs effets néfastes sur l’ADN
Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco‑2 and Caco‑2/HT29‑MTX models, Cornu R et al., Arch Toxicol, 94(4) : 1191-1202, avril 2020
Une exposition orale chronique à l’additif alimentaire E551 (dioxyde de silice) bloque l’induction de la tolérance orale et prédispose à l’intolérance alimentaire chez la souris, Breyner NM et al.. Journées Francophones de Nutrition, novembre 2019
Chronic oral exposure to synthetic amorphous silica (NM-200) results in renal and liver lesions in mice, Boudard D et al., Kidney International Reports, 2019
Risk assessment of silica nanoparticles on liver injury in metabolic syndrome mice induced by fructose, Li J et al., Science of The Total Environment, 628–629 : 366-374, juillet 2018 : « Silica nanoparticles (SiNPs) aggravate liver injury in metabolic syndrome mice ; SiNPs lead to mitochondrial injury in liver ; SiNPs stimulate hepatic ROS generation ; SiNPs lead to hepatic DNA damage »
Silicon dioxide nanoparticle exposure affects smallintestine function in an in vitro model, Guo Z et al, Nanotoxicology, avril 2018 : « SiO2 NP exposure significantly affected iron (Fe), zinc (Zn), glucose, and lipid nutrient absorption. Brush border membrane intestinal alkaline phosphatase (IAP) activity was increased in response to nano-SiO2. The barrier function of the intestinal epithelium (…) was significantly decreased in response to chronic exposure. Gene expression and oxidative stress formation analysis showed NP altered the expression levels of nutrient transport proteins, generated reactive oxygen species, and initiated pro-inflammatory signaling. SiO2 NP exposure damaged the brush border membrane by decreasing the number of intestinal microvilli, which decreased the surface area available for nutrient absorption. SiO2 NP exposure at physiologically relevant doses ultimately caused adverse outcomes in an in vitro model »
, qui confirment l’existence d’effets néfastes de l’ingestion de nanoparticules de silice, notamment sur le foie, les intestins et les reins ou le système immunitaire.

(Des fabricants de silice ont tenté de défendre leur produit en attaquant l’une de ces études, parue en 2019 ; les chercheur·es visé·es ont à leur tour répondu, toujours dans la même revue, en démontant point par point les critiques mises en avant par les fabricants de silice11L’article original était celui de Boudard D et al. : Chronic oral exposure to synthetic amorphous silica (NM-200) results in renal and liver lesions in mice, Boudard D et al., Kidney International Reports, 2019. La lettre à l’éditeur des représentants de fabricants (ou utilisateurs) de silice (the Association of Synthetic Amorphous Silica Producers (ASASP), PQ Corporation, Wacker Chemie AG, Evonik Resource Efficiency GmbH, Grace Europe Holding GmbH, Solvay, et Pittsburgh Plate Glass Company) a été envoyée en novembre 2019. La réponse des chercheurs a été envoyée en décembre 2019. Toutes deux ont été publiées sur le site de KI Reports le 10 mars 2020.).

Nanoparticules d'argent (E174)

Des nanoparticules d’argent sont présentes dans l‘additif E174 mais également dans des emballages ou contenants alimentaires antibactériens ; or des nanoparticules d’argent injectées dans le sang de rats ont été retrouvées jusque dans le foie, au niveau noyau des hépatocytes, et altèrent les cellules de cet organe vital12Cf. Effects of Silver Nanoparticles on the Liver and Hepatocytes in vitro, Gaiser B.K. et al., Toxicol. Sci., 2012.

Une autre étude a montré que des nanoparticules d’argent administrées par voie orale à des souris ont endommagé les cellules épithéliales ainsi que les glandes intestinales des rongeurs et entraîné une diminution de leur poids13cf. Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice, Toxicology Mechanisms and Methods, 23(3), Mars 2013 ;; une perturbation de la flore intestinale a également été observée chez des poissons zèbres alimentés avec de la nourriture contenant des nanoparticules d’argent14cf. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio), Environmental Pollution, 174, Mars 2013, ainsi que chez la souris15Dietary silver nanoparticles can disturb the gut microbiota in mice, Van den Brule S et al., Particle and fibre toxicology, 13, 2016 (voir le résumé et l’analyse en français ici : Effets des nanoparticules d’argent sur les communautés bactériennes, Vernis L., Bulletin de veille scientifique, n°32, octobre 2017).

Il a été également démontré que l‘ingestion de nanoparticules d’argent provoque des altérations permanentes du génome chez la souris et pourraient donc conduire à un cancer16Oral ingestion of silver nanoparticles induces genomic instability and DNA damage in multiple tissues, Nanotoxicology, 2014
Voir également : Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells, Toxicology in Vitro, 28(7), 1280-1289, octobre 2014
, etc. D’autres résultats concordants ont été publiés récemment, montrant également des effets néfastes des nanoparticules d’argent au niveau des reins sur des rats17Voir par exemple :
Oral subchronic exposure to silver nanoparticles causes renal damage through apoptotic impairment and necrotic cell death, Rui Deng et al., Nanotoxicology, 11(5) : 671-686, 2017
Comparative toxicity of silicon dioxide, silver and iron oxide nanoparticles after repeated oral administration to rats, Journal of Applied Toxicology, 35(6) : 681–693, juin 2015
.

Nanoparticules d'oxyde de zinc (ZnO)

Les nanoparticules d’oxyde de zinc présentes sur le revêtement intérieur des boîtes de conserve se retrouvent dans les aliments et risquent d’entraîner une moins bonne absorption des nutriments et une plus grande perméabilité de l’intestin, transférant dans le sang des composés indésirables18Voir notamment :
ZnO nanoparticles affect intestinal function in an in vitro model, Moreno-Olivas F et al., Food Funct., 9 : 1475-1491, 2018 ; voir le résumé en français ici : Les aliments en conserve pourraient nuire à notre digestion, Top Santé, 10 avril 2018 et là les aliments en conserve perturbent la digestion,Bio à la une, 12 avril 2018.
.

Les nanocomposites de dioxyde de cerium (CeO2)

Ils peuvent provoquer une altération du métabolisme19Cf. « Nanoparticules d’oxyde : quelle toxicité sur les cellules intestinales ? », travaux du CEA-iBEB réalisés dans le cadre du projet ANR AgingNanoTroph, 3 janvier 2013.

Outre les répercussions sur la santé de l’ingestion de nanoparticules, il est à noter que les risques pour l’environnement sont également mal cernés et préoccupants.

De nombreuses incertitudes scientifiques

On ignore aujourd’hui encore beaucoup de choses sur les répercussions que l’ingestion de nanomatériaux peut avoir sur la santé humaine. Les études de toxicité des nanoparticules par voie orale sont rares et beaucoup ont pu comporter des faiblesses méthodologiques qui rendent difficile l’utilisation de leurs résultats. Les conditions expérimentales reflètent encore mal la façon dont les consommateurs sont exposés ; les nanomatériaux considérés sont souvent synthétisés en laboratoire et donc différents des nanomatériaux (et résidus de nanomatériaux) que les consommateurs ingèrent réellement. En outre, les caractéristiques physico-chimiques des nanoparticules testées et leurs interactions avec la matrice alimentaire sont insuffisamment documentées. Néanmoins des progrès sont en cours depuis peu, grâce aux améliorations des pratiques des chercheurs, des outils et des protocoles.

La complexité de l’évaluation des risques liés à l’ingestion de nanomatériaux

L’un des problèmes qui risque de durer encore néanmoins a trait à la grande complexité de l’évaluation des risques liés à l’ingestion de nanomatériaux : la toxicité des nanoparticules diffère en effet selon leurs caractéristiques physico-chimiques (dimension, forme, degré d’agglomération, etc.). Or, ces caractéristiques sont très variables selon les nanomatériaux et peuvent évoluer tout au long de leur cycle de vie :

  • en fonction des conditions dans lesquelles les nanomatériaux sont synthétisés, stockés, éventuellement enrobés ;
  • par les transformations qu’ils subissent lors de la cuisson et de la préparation des plats ou dans l’appareil digestif20Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials, Bellmann S et al., WIREs Nanomed Nanobiotechnol., 2015 (par exemple au contact du milieu acide de l’estomac, etc.)
  • lors des interactions avec les emballages et/ou avec les autres ingrédients et substances chimiques avec lesquels les nanomatériaux se retrouvent mélangés (avant puis pendant l’ingestion et la digestion) ; on peut craindre par exemple un « effet cocktail » avec certaines autres molécules de synthèse21Des nanomatériaux, combinés avec d’autres substances, pourraient devenir (plus) dangereux ? Les toxicologues travaillent souvent en isolant des substances ce qui ne permet pas d’établir les effets d’interaction d’une pluralité de substances pénétrant dans l’organisme.

L’évaluation du risque doit en outre tenir compte :

Depuis 2009, un large consensus sur la nécessité de renforcer les recherches sur les risques liés aux nanos ingérés

En 2009, l’Organisation des Nations unies pour l’alimentation et l’agriculture (FAO) et l’Organisation mondiale de la santé (OMS) ont convoqué une réunion d’experts sur les incidences des nanotechnologies sur la sécurité sanitaire des aliments : le rapport qui en est issu, publié en 2011, liste les besoins de recherche pour mieux évaluer les risques dans le domaine. 

Depuis 2009, l’ANSES appelle à améliorer les connaissances relatives aux dangers et à l’exposition des consommateurs aux nanomatériaux. En octobre 2016, l’ANSES a été saisie par ses ministères de tutelle pour étudier les risques liés aux nanoparticules dans l’alimentation, et plus précisément :

  • réaliser une étude détaillée de la filière agro-alimentaire au regard de l’utilisation des nanos dans l’alimentation,
  • prioriser les substances et/ou produits finis d’intérêt en fonction de critères pertinents déterminés au cours de l’expertise,
  • réaliser une revue des données disponibles (effets toxicologiques et données d’exposition)
  • et en fonction de leur disponibilité, étudier la faisabilité d’une évaluation des risques sanitaires pour certains produits.

Un « groupe de travail » (« GT nano alimentation ») composé d’experts indépendants a été mis en place courant 2017. Les premiers résultats de l’expertise, initialement attendus pour fin 201725Réponse à la question N° 85181 du député Yves Daniel, ministère des Affaires sociales, de la santé et des droits des femmes, octobre 2016 ; voir aussi L’Anses lance un appel à candidatures d’experts scientifiques afin de procéder à la constitution d’un groupe de travail (GT) «Nanos & Alimentation », ANSES, janvier 2017, ont été publiés mi-2020 dans un rapport identifiant les produits alimentaires contenant (ou susceptibles de contenir) des nanomatériaux26Cf. ANSES, Nanomatériaux dans les produits destinés à l’alimentation ; Rapport d’expertise collective, mai 2020.

En 2021, l’ANSES a publié un deuxième rapport : un guide spécifique pour évaluer les risques sanitaires des nanomatériaux dans l’alimentation complémentaire au rapport sur le même sujet publié quelques mois plus tôt par l’EFSA.

Nonobstant le large consensus sur la nécessité de renforcer les recherches sur les risques liés aux nanomatériaux ingérés, ces dernières sont aujourd’hui encore limitées.

En attendant des évaluations concluantes, la commercialisation de produits alimentaires contenant des nanoparticules continue

En attendant, les consommateurs continuent donc d’ingérer des nanoparticules de dioxyde de titane, de silice, d’argent, etc., le plus souvent sans le savoir, faute d’application par l’industrie de l’obligation d’étiquetage !

En présentant son guide d’évaluation des risques des nanos dans l’alimentation, l’Anses conclue sur « la nécessité de limiter l’exposition des travailleurs, des consommateurs et de l’environnement aux nanomatériaux » et recommande « de favoriser les produits sûrs, dépourvus de ces substances ».

Compte tenu des dangers, des appels à la prudence et au principe de précaution 

Recommandations des pouvoirs publics sur les nanos dans l’alimentation

Devant les nombreuses incertitudes concernant les risques des nanos dans l’alimentation, beaucoup d’organisations publiques ou para-publiques ont émis des recommandations concernant l’utilisation de nanomatériaux ou nanotechnologies dans le domaine alimentaire27Voir notamment les nombreux rapports des pouvoirs publics listés dans notre bibliographie. Parmi les rapports les plus complets figure l’Avis sur les enjeux éthiques des nanotechnologies dans le secteur agroalimentaire de la Commission de l’éthique en science et en technologie du Québec publié dès 2011, avec neuf recommandations concrètes qui donnent un bon aperçu des recommandations émises par divers acteurs dans d’autres cadres, avec l’avantage d’être ici relativement bien articulées et presque exhaustives..

Ces recommandations peuvent être schématiquement résumées ainsi :

  • réaliser une veille scientifique et technologique sur les applications nanotechnologiques dans l’agroalimentaire et les risques associés ;
  • approfondir les recherches sur les risques ;
  • informer le public ;
  • consulter la population ;
  • développer l’échange interministériel d’informations sur l’état des connaissances scientifiques sur les risques ;
  • permettre l’évaluation publique de l’innocuité et l’encadrement juridique des produits concernés ;
  • exiger la transparence des industriels et l’étiquetage des produits concernés.

Des ONG ont demandé la mise en place d’un moratoire sur les nanos dans l’alimentation

Parmi les ONG qui se sont prononcées contre l’utilisation de nanomatériaux dans les produits de consommation courante28Voir parmi les 51 cahiers d’acteurs des organisations qui ont pris position lors du débat public national sur les nanotechnologies de 2009-2010., différentes ONG29Voir notamment les rapports d’ONG listés dans notre bibliographie ont spécifiquement appelé au moratoire concernant l’utilisation de nanomatériaux dans l’alimentation, notamment :

Des consommateurs peu désireux de jouer les cobayes

Dans un contexte général où les consommateurs se montrent de plus en plus suspicieux envers l’alimentation industrielle31Voir par exemple Alimentation : face aux doutes, les internautes s’organisent, Le Monde, 15 avril 2013, la réticence et la méfiance des consommateurs vis-à-vis des nanoparticules dans l’alimentation sont croissantes. De manière générale, les consommateurs attendent plus de transparence et ne veulent pas être « cobayes de la nano-bouffe »32Nanotechnologies : tous cobayes de la nano-bouffe ?, Basta!, 14 janvier 2010, ce qu’ils sont pourtant déjà, à leur corps défendant, puisque notre alimentation contient déjà des nanomatériaux – et pas seulement des objets nano « virtuels » comme ceux utilisés à l’INRA pour l’étude mentionnée plus haut menée en 2011.

Depuis 2016, la pétition Stop aux nanoparticules dans nos assiettes ! lancée par Agir pour l’Environnement, exigeant un moratoire sur les nanoparticules dans les produits alimentaires courants, a recueilli plus de 52 000 signatures.

En 2011, les chercheurs de l’INRA avaient conclu qu’« en situation d’incertitude et de controverses, les décideurs devraient porter une attention particulière sur les modes de communication participatifs ou délibératifs ». L’association Sciences Citoyennes milite à cet égard depuis plusieurs années pour la mise en place de conventions de citoyens dont les autorités devraient prendre en compte les recommandations.

Les chercheurs de l’INRA rajoutent que « cette communication doit être accompagnée d’une politique forte garantissant la sécurité des nano-aliments dans un contexte de méfiance des consommateurs européens ». Reste à déterminer qui doit prendre en charge le coût d’une telle politique de sécurité visant à rassurer la population sur des applications dont les avantages restent à prouver et dont l’industrie agroalimentaire et certains laboratoires de recherche semblent être les principaux bénéficiaires, davantage que les consommateurs : est-ce aux contribuables de payer ou aux entreprises qui espèrent tirer profit de leur commercialisation ?

Une remarque, une question ? Cette fiche réalisée par AVICENN a vocation à être complétée et mise à jour. N'hésitez pas à apporter votre contribution.

Les prochains RDV nanos

31
Mai
2022
Reach et nanomatériaux (LNE, en ligne)
En ligne
Wébinaire
  • Wébinar gratuit
  • Organisateur : Laboratoire national de métrologie et d’essais (LNE)
  • Programme : Les évolutions réglementaires de REACH spécifiques aux nanomatériaux et les moyens de caractérisation disponibles pour y répondre
  • Intervenante : Valérie Godefert, Chef de produit Nanotechnologies (Institut LNE-Nanotech)
  • Site internet : www.lne.fr/fr/webinars/reach-nanomateriaux-faites-point
20
Juin
2022
Evolution of Nanosafety and materials sustainability as we transition into Horizon Europe (NanoCommons, Chypre)
Chypre
Conférence
  • Du 20 au 24 Juin 2022
  • « Nano-week » & NanoCommons Final conference
  • Organisateur : NanoCommons en collaboration avec EU NanoSafety Cluster projects
  • Jusqu’au 22 février : possibilité de proposer un résumé pour une présentation orale
  • Site internet : www.nanocommons.eu/…

21
Juin
2022
Les nanomatériaux : quels risques pour la santé ? Quelle prévention ? (Présance PACA-Corse, Marseille)
Marseille
Wébinaire
  • Wébinaire pour les acteurs de la santé au travail
  • 6 parties :
    • I. Les définitions et les expositions professionnelles
    • II. Le contexte réglementaire
    • III. Les effets sur la santé et le suivi médical
    • IV. La démarche de prévention et les moyens de prévention en entreprise
    • V. Que peut vous apporter votre service de prévention et de santé au travail interentreprises (SPSTI) ?
    • VI. Cas pratique : le Dioxyde de Titane (TiO2)
  • Organisateur : Présanse Paca-Corse
  • Intervenants :
    • Nora Sikha, ingénieure HSE à l’AISMT 04
    • Valérie Spinelli, médecin du travail à l’AISMT 13
    • Agnès Donat, technicienne en prévention à Expertis
    • Myriam Ricaud, ingénieure chimiste à l’INRS
  • Site internet : https://openagenda.com/calendrier…

Fiche initialement créée en mai 2013


Notes & références

Notre veille, nos informations et nos actions ont besoin de vous pour durer !